Research Papers

Development of Gradient Concentrated Single-Phase Fine Mg-Zn Particles and Effect on Structure and Mechanical Properties

[+] Author and Article Information
S. Fida Hassan

Department of Mechanical Engineering,
King Fahd University of
Petroleum and Minerals,
P.O. Box 1061,
Dhahran 31261, Saudi Arabia
e-mails: sfhassan@kfupm.edu.sa;

O. Siddiqui, M. F. Ahmed, A. I. Al Nawwah

Department of Mechanical Engineering,
King Fahd University of
Petroleum and Minerals,
P.O. Box 1061,
Dhahran 31261, Saudi Arabia

1Corresponding author.

Contributed by the Materials Division of ASME for publication in the JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY. Manuscript received March 8, 2018; final manuscript received October 22, 2018; published online December 20, 2018. Assoc. Editor: Khaled Morsi.

J. Eng. Mater. Technol 141(2), 021007 (Dec 20, 2018) (6 pages) Paper No: MATS-18-1064; doi: 10.1115/1.4041865 History: Received March 08, 2018; Revised October 22, 2018

In this study, we used powder metallurgy process to develop gradient concentrated single-phase fine magnesium–zinc alloy particles. Fine magnesium particles were initially dry coated with nanometer size zinc particles in homogeneous manner and cold compacted to cylindrical billet. Zinc atoms were diffused in to the magnesium particles during high-temperature sintering process and produced the single-phase gradient solid solution. The gradient concentration of zinc induced gradual grain refinement in the magnesium particles. The powder metallurgy processed gradient concentrated alloy particles showed an excellent level of hardness, strength, ductility, and fracture toughness in their bulk form, which was even much higher when compared with unalloyed magnesium. Despite having gradient solid solution structure, the developed alloy particles showed homogeneous properties in their bulk form.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.


Sobczak, J. J. , and Drenchev, L. , 2013, “Metallic Functionally Graded Materials: A Specific Class of Advanced Composites,” J. Mater. Sci. Technol., 29(4), pp. 297–316. [CrossRef]
Kawasaki, A. , and Watanabe, R. , 1997, “Concept and P/M Fabrication of Functionally Gradient Materials,” Ceram. Int., 23(1), pp. 73–83. [CrossRef]
Koizumi, M. , and Niino, M. , 1995, “Overview of FGM Research in Japan,” MRS Bull., 20(1), pp. 19–24. [CrossRef]
Mahamood, R. M. , and Akinlabi, E. T. , 2017, Functionally Graded Materials, Springer International Publishing AG, Cham, Switzerland.
Zhou, Z. J. , Song, S. X. , Du, J. , Zhong, Z. H. , and Ge, C. C. , 2007, “Performance of W/Cu FGM-Based Plasma Facing Components Under High Heat Load Test,” J. Nucl. Mater., 363–365, pp. 1309–1314. [CrossRef]
Kieback, B. , Neubrand, A. , and Riedel, H. , 2003, “Processing Techniques for Functionally Graded Materials,” Mat. Sci. Eng. A, 362(1–2), pp. 81–105. [CrossRef]
Watanabe, Y. , Yamanaka, N. , Sato, H. , and Fujiwara, E. M. , 2009, “Novel Fabrication Method for Functionally Graded Materials Under Centrifugal Force: The Centrifugal Mixed-Powder Method,” Materials, 2(4), pp. 2510–2525. [CrossRef]
Nemat-Alla, M. M. , Ata, M. H. , Bayoumi, M. R. , and Khair-Eldeen, W. , 2001, “ Powder-Metallurgical Fabrication and Microstructural Investigations of Aluminum/Steel Functionally Graded Material,” Mater. Sci. Appl., 2(12), pp. 1708–1718.
Mahamood, R. M. , Akinlabi, E. T. , Shukla, M. , and Pityana, S. , 2014, “Revolutionary Additive Manufacturing: An Overview,” Laser Eng., 27(3–4), pp. 161–178. http://www.oldcitypublishing.com/journals/lie-home/lie-issue-contents/lie-volume-27-number-3-4-2014/lie-27-3-4-p-161-178/
Tang, X. , Zhang, H. , Du, D. , Qu, D. , Hu, C. , and Xie, R. , 2014, “Fabrication of W–Cu Functionally Graded Material by Spark Plasma Sintering Method,” Int. J. Refract. Met. Hard Mater, 42, pp. 193–199. [CrossRef]
Yu, L. , Gong, D. , Wang, C. , Yang, Z. , and Zhang, L. , 2003, “Microstructure Analysis of W-Mo-Ti Functionally Graded Materials Fabricated by Co-Sedimentation,” Key Eng. Mater., 249, pp. 299–302. [CrossRef]
Xiong, H. , Zhang, L. , Chen, L. , Hirai, T. , and Yuan, R. , 2000, “Design and Fabrication of W-Mo-Ti-TiAl-Al System Functionally Graded Material,” Metall. Mater. Trans. A, 31(9), pp. 2369–2376. [CrossRef]
Hu, T. , Chen, L. , Wu, S. L. , Chu, C. L. , Wang, L. M. , Yeung, K. W. K. , and Chu, P. K. , 2011, “Graded Phase Structure in the Surface Layer of NiTi Alloy Processed by Surface Severe Plastic Deformation,” Scr. Mater., 64(11), pp. 1011–1014. [CrossRef]
Ding, L. , Luo, G. , Shen, Q. , and Zhang, L. , 2003, “Fabrication of Ti-Mg System Composite With Graded Density at a Low Temperature by SPS Method,” Key Eng. Mater., 249, pp. 291–294. [CrossRef]
Ilic, D. , Fiscina, J. , Oliver, C. G. , and Meucklich, F. , 2005, “Properties of Cu-W Functionally Graded Materials Produced by Segregation and Infiltration,” Mater. Sci. Forum, 492–493, pp. 123–128. [CrossRef]
Sato, H. , Murase, T. , Fujii, T. , Onaka, S. , Watanabe, Y. , and Kato, M. , 2008, “Formation of a Wear-Induced Layer With Nanocrystalline. Structure in Al-Al3Ti Functionally Graded Material,” Acta Mater., 56(17), pp. 4549–4558. [CrossRef]
Song, C. , Xu, Z. , Liu, X. , Liang, G. , and Li, J. , 2005, “In Situ Multi-Layer Functionally Graded Materials by Electromagnetic Separation Method,” Mater. Sci. Eng. A, 393(1–2), pp. 164–169. [CrossRef]
Watanabe, Y. , Sato, R. , Kim, I. S. , Miura, S. , and Miura, H. , 2005, “Functionally Graded Material Fabricated by a Centrifugal Method From ZK60A Magnesium Alloy,” Mater. Trans., 46(5), pp. 944–949. [CrossRef]
Gupta, M. , and Sharon, N. M. L. , 2011, Magnesium, Magnesium Alloys, and Magnesium Composites, Wiley, Hoboken, NJ.
Raynor, G. V. , 1959, The Physical Metallurgy of Magnesium and Its Alloys, Pergamon Press, London.
Staiger, M. P. , Pietak, A. M. , Huadmai, J. , and Dias, G. , 2006, “Magnesium and Its Alloys as Orthopedic Biomaterials: A Review,” Biomaterials, 27(9), pp. 1728–1734. [CrossRef] [PubMed]
Karparvarfard, S. M. H. , Shaha, S. K. , Behravesh, S. B. , Jahed, H. , and Williams, B. W. , 2017, “Microstructure, Texture and Mechanical Behavior Characterization of Hot Forged Cast ZK60 Magnesium Alloy,” J. Mater. Sci. Technol., 33(9), pp. 907–918. [CrossRef]
Hou, L. , Li, B. , Wu, R. , Cui, L. , Ji, P. , Long, R. , Zhang, J. , Li, X. , Dong, A. , and Sun, B. , 2017, “Microstructure and Mechanical Properties at Elevated Temperature of Mg-Al-Ni Alloys Prepared Through Powder Metallurgy,” J. Mater. Sci. Technol., 33(9), pp. 947–953. [CrossRef]
Vogel, M. , Kraft, O. , and Arzt, E. , 2005, “Effect of Calcium Additions on the Creep Behavior of Magnesium Die-Cast Alloy ZA85,” Met. Mater. Trans. A, 36(7), pp. 1713–1719. [CrossRef]
Dongsong, Y. , Erlin, Z. , and Songyan, Z. , 2009, “Effect of Zn Content on Microstructure, Mechanical Properties and Fracture Behavior of Mg-Mn Alloy,” China Foundry, 6(1), pp. 43–47. http://citeseerx.ist.psu.edu/viewdoc/download?doi=
Cai, S. , Lei, T. , Li, N. , and Feng, F. , 2012, “Effects of Zn on Microstructure, Mechanical Properties and Corrosion Behavior of Mg-Zn Alloys,” Mat. Sci. Eng. C-Mater., 32(8), pp. 2570–2577. [CrossRef]
Nie, J. F. , 2012, “Precipitation and Hardening in Magnesium Alloys,” Met. Mater. Trans. A, 43(11), pp. 3891–3939. [CrossRef]
Hassan, S. F. , 2017, “Microstructure and Mechanical Properties of Nickel Particle Reinforced Magnesium Composite: Impact of Reinforcement Introduction Method,” Int. J Mater. Res., 108(3), pp. 185–191. [CrossRef]
Powder Diffraction File, 1991, International Center for Diffraction Data, Powder Diffraction File, Swarthmore, PA.
Neumann, G. , and Tuijn, C. , 2009, Self-Diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data, Elsevier, Oxford, UK.
Gu, J. , Huang, Y. , Zhang, M. , Kainer, K. U. , and Hort, N. , 2017, Magnesium Tech. 2017, The Minerals, Metals & Materials Society, Cham, Switzerland.
Yan, Y. , Cao, H. , Kang, Y. , Yu, K. , Xiao, T. , Luo, J. , Deng, Y. , Fang, H. , Xiong, H. , and Dai, Y. , 2017, “Effects of Zn Concentration and Heat Treatment on the Microstructure, Mechanical Properties and Corrosion Behavior of as-Extruded Mg-Zn Alloys Produced by Powder Metallurgy,” J. Alloy. Compd., 693, pp. 1277–1289. [CrossRef]
Park, S. H. , Lee, J. H. , Moon, B. G. , and You, B. S. , 2014, “Tension–Compression Yield Asymmetry in as-Cast Magnesium Alloy,” J. Alloy. Compd., 617, pp. 277–280. [CrossRef]
Cáceres, C. H. , and Lukáč, P. , 2008, “Strain Hardening Behaviour and the Taylor Factor of Pure Magnesium,” Philos. Mag., 88(7), pp. 977–989. [CrossRef]
Agnew, S. R. , Yoo, M. H. , and Tome, C. N. , 2001, “Application of Texture Simulation to Understanding Mechanical Behavior of Mg and Solid Solution Alloys Containing Li or Y,” Acta Mater., 49(20), pp. 4277–4289. [CrossRef]
Xu, S. , Gertsman, V. Y. , Li, J. , Thomson, J. P. , and Sahoo, M. , 2005, “Role of Mechanical Twinning in Tensile Compressive Yield Asymmetry of Die Cast Mg Alloys,” Can. Metall. Q., 44(2), pp. 155–166. [CrossRef]
Barnett, M. R. , Davies, C. H. J. , and Ma, X. , 2005, “An Analytical Constitutive Law for Twinning Dominated Flow in Magnesium,” Scr. Mater., 52(7), pp. 627–632. [CrossRef]
Barnett, M. R. , Keshavarz, Z. , Beer, A. G. , and Atwell, D. , 2004, “Influence of Grain Size on the Compressive Deformation of Wrought Mg–3Al–1Zn,” Acta Mater., 52(17), pp. 5093–5103. [CrossRef]
Jiang, L. , Jonas, J. J. , Luo, A. A. , Sachdev, A. K. , and Godet, S. , 2007, “Influence of 10–12 Extension Twinning on the Flow Behavior of AZ31 Mg Alloy,” Mat. Sci. Eng. A-Struct., 445–446, pp. 302–309. [CrossRef]
Jiang, W. , Chen, T. , Wang, L. , Feng, Y. , Zhu, Y. , Wang, K. , Luo, J. , and Zhang, S. , 2013, “Microstructure in the Semi-Solid State and Mechanical Properties of AZ80 Magnesium Alloy Reheated From the as-Cast and Extruded States,” Acta Metall. Sin., 26(4), pp. 473–477. [CrossRef]
Huang, Z. H. , Qi, W. J. , Zheng, K. H. , Zhang, X. M. , Liu, M. , Yu, Z. M. , and Xu, J. , 2013, “Microstructures and Mechanical Properties of Mg–Zn–Zr–Dy Wrought Magnesium Alloys,” Bull. Mater. Sci., 36(3), pp. 437–445. [CrossRef]
Kim, W. J. , Jeong, H. G. , and Jeong, H. T. , 2009, “Achieving High Strength and High Ductility in Magnesium Alloys Using Severe Plastic Deformation Combined With Low-Temperature Aging,” Scr. Mater., 61(11), pp. 1040–1043. [CrossRef]
Orlov, D. , Raab, G. , Lamark, T. T. , Popov, M. , and Estrin, Y. , 2011, “Improvement of Mechanical Properties of Magnesium Alloy ZK60 by Integrated Extrusion and Equal Channel Angular Pressing,” Acta Mater., 59(1), pp. 375–385. [CrossRef]


Grahic Jump Location
Fig. 1

Showing schematic of processing effect (a) and X-ray diffraction spectrum (b) for processed microscopically gradient Mg-6Zn alloy

Grahic Jump Location
Fig. 2

Temperature-dependent diffusion coefficient of zinc into magnesium (a), and energy dispersive spectroscopy area map showing gradient distribution of zinc (b) into magnesium particles (in fractured condition) (c) in Mg-6Zn alloy

Grahic Jump Location
Fig. 3

Grain morphology pattern in magnesium alloy with gradient zinc concentration in schematic form (a) and optical micrographical form for a particle (b)

Grahic Jump Location
Fig. 4

Graph showing stress–strain behavior of sintered microscopically gradient structured Mg-6Zn alloy

Grahic Jump Location
Fig. 5

Schematic of dislocation pile-up at the magnesium interparticle boundary, with high concentration of zinc, under applied stress: (a) leading to formation of interparticle void formation, (b) as shown in scanning electron fractographs, and (c) of microscopically gradient Mg-6Zn alloy



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In