0
RESEARCH PAPERS

Fracture Mechanics Approach to Fatigue Analysis in Design

[+] Author and Article Information
R. P. Wei

Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pa.

J. Eng. Mater. Technol 100(2), 113-120 (Apr 01, 1978) (8 pages) doi:10.1115/1.3443458 History: Received November 11, 1977; Revised January 06, 1978; Online August 17, 2010

Abstract

Many engineering structures are subjected to cyclically varying (fatigue) loads during service. Fatigue analysis, or the estimation of fatigue lives on such structures, is therefore an essential part of engineering design. In this paper, the fracture mechanics approach to fatigue analysis is described. This approach has evolved over the last decade, and is based on the assumptions (i) that there are preexisting flaws or cracks in a structural component, or that cracks are initiated early in the life of the component, and (ii) that the fatigue life of the component is determined principally by the rate of growth of these cracks under cyclic loading. Characterization of the rate of fatigue crack growth in terms of fracture mechanics parameters is discussed. The relationship between these parameters and those commonly used in fatigue analysis is identified. A procedure for estimating fatigue lives from crack growth data is outlined. The importance of various loading and environmental variables on fatigue life prediction is considered. A number of example problems are given to illustrate the procedure and the various effects.

Copyright © 1978 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In