Void Nucleation Effects in Biaxially Stretched Sheets

[+] Author and Article Information
C. C. Chu, A. Needleman

Division of Engineering, Brown University, Providence, R.I. 02912

J. Eng. Mater. Technol 102(3), 249-256 (Jul 01, 1980) (8 pages) doi:10.1115/1.3224807 History: Received October 09, 1979; Online September 15, 2009


The effects of void nucleation occurring during the deformation history on forming limit curves are considered for both in-plane and punch stretching employing a constitutive model of a porous plastic solid. Both plastic strain controlled and stress controlled nucleation processes are simulated by a two parameter void nucleation criterion. For in-plane stretching, plastic strain controlled nucleation can have, in certain circumstances, a significantly destabilizing effect on the forming limit curve. However, within the framework of plane stress theory which neglects the enhancement of the hydrostatic stress due to necking, a stress controlled nucleation process is not found to be significantly destabilizing. In punch stretching a ductile rupture criterion, which limits the maximum volume fraction of voids, as well as the appearance of a well defined thickness trough, is adopted as a localized necking criterion. Only plastic strain controlled void nucleation is considered here in out-of-plane stretching. The resulting forming limit curves have the same shape as those obtained previously with void nucleation neglected.

Copyright © 1980 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In