0
RESEARCH PAPERS

Fatigue Crack Retardation of Low Carbon Steel in Saltwater

[+] Author and Article Information
K. Tokaji, Z. Ando, T. Kojima

Department of Mechanical Engineering, Gifu University, 1-1 Yanagido, Gifu, Japan

J. Eng. Mater. Technol 106(1), 38-42 (Jan 01, 1984) (5 pages) doi:10.1115/1.3225674 History: Received May 20, 1982; Online September 23, 2009

Abstract

The crack propagation behavior following the application of a single tensile overload in 3 percent saltwater was examined using a low carbon steel, which has a considerably lower static strength than high strength steel used in previous report. Experiments were carried out under sinusoidally varying loads at a load ratio of 0 and a frequency of 10 Hz, and the effects of saltwater were evaluated by comparing with the result in air and result on high strength steel. A single tensile overload was found to cause delayed retardation, just as it did in air. The overload affected zone size was not affected by saltwater and showed the same value in both environments. This observed trend differed from the result on high strength steel in which the overload affected zone size was larger in 3 percent saltwater than in air, and thus it was found that the effect of saltwater on retardation behavior was different even in the similar steels. Retardation cycles were smaller in 3 percent saltwater than in air. Since the overload affected zone size was not affected by saltwater, the decrease in retardation cycles was attributed to the higher rates of fatigue crack propagation in 3 percent saltwater. Thinner specimen showed stronger retardation than thicker one. The behavior at midthickness of thicker specimen showed delayed retardation as well as the result in air. Moreover, the crack propagation behavior following the application of a single tensile overload in 3 percent saltwater was well explained by the crack closure concept.

Copyright © 1984 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In