The Freely Expanding Ring Test—A Test to Determine Material Strength at High Strain Rates

[+] Author and Article Information
R. H. Warnes, R. R. Karpp, P. S. Follansbee

Los Alamos National Laboratory, Los Alamos, NM 87545

J. Eng. Mater. Technol 108(4), 335-339 (Oct 01, 1986) (5 pages) doi:10.1115/1.3225891 History: Received October 22, 1985; Online September 15, 2009


The freely expanding ring test (ERT) is a conceptually simple test for determining the stress-strain behavior of materials at large strains and at high strain rates. This test is conducted by placing a thin ring of test material in a state of uniform radial expansion and then measuring its subsequent velocity-time history. The ring is usually propelled by a high explosive driving system. The test has not become popular in the materials property community, however, because there has been some concern about how the launching of the ring sample with an explosively generated shock wave might affect the properties to be measured. To determine the suitability of the ERT for these fundamental investigations, a series of experiments was performed on a carefully controlled material—oxygen-free electronic fully annealed copper. Recovered ring samples were analyzed and the change in hardness determined. Comparisons of the ERT data with that from Hopkinson bar tests at strain rates of about 5 × 103 s−1 indicate that the shock-induced hardness is approximately equivalent to a strain hardening of 5 percent. ERT data on this material at strain rates up to 2.3 × 104 s−1 are presented.

Copyright © 1986 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In