0
RESEARCH PAPERS

A Modified Universal Slopes Equation for Estimation of Fatigue Characteristics of Metals

[+] Author and Article Information
U. Muralidharan

Case Western Reserve University

S. S. Manson

Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106

J. Eng. Mater. Technol 110(1), 55-58 (Jan 01, 1988) (4 pages) doi:10.1115/1.3226010 History: Received July 06, 1987; Online September 15, 2009

Abstract

Using extensive data on forty-seven materials including steels, aluminum, and titanium alloys, a new equation has been derived for estimating fatigue properties from simple tensile data at the temperature of interest in the sub-creep range. Compared to the Universal Slopes Equation previously proposed by Manson and Hirschberg, the new equation provides predictions that agree more closely with the measured fatigue properties over the entire life range. The earlier Universal Slopes Equation now in common use involves only ductility in the estimation of the plastic line whereas the improved equation involves both tensile strength and ductility in the estimation of the plastic line. A new equation was also derived for a large class of materials suitable for use in the cryogenic temperature range (ten different structural alloys and metals tested at liquid helium and liquid nitrogen temperatures). Here, as in the original Universal Slopes Equation, the plastic line did not require a tensile strength term. Although new constants were derived for the cryogenic range, the final predictions provided about the same degree of accuracy as the original Universal Slopes Equation.

Copyright © 1988 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In