Multiaxial Fatigue Damage Criterion

[+] Author and Article Information
F. Ellyin, K. Golos

Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2G8

J. Eng. Mater. Technol 110(1), 63-68 (Jan 01, 1988) (6 pages) doi:10.1115/1.3226012 History: Received December 05, 1986; Online September 15, 2009


A multiaxial fatigue failure criterion is proposed based on the strain energy density damage law. The proposed criterion is hydrostatic pressure sensitive; includes the effect of the mean stress, and applies to materials which do not obey the idealized Masing type description. The material constants can be evaluated from two simple test results, e.g., uniaxial tension, and torsion fatigue tests. The predicted results are compared with biaxial tests and the agreement is found to be fairly good. A desirable feature of this criterion is its unifying nature for both short and long cyclic lives. It is also consistent with the crack initiation and propagation phases of the fatigue life, in the sense that both of these phases can be related to the strain energy density either locally or globally.

Copyright © 1988 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In