One-Dimensional Density Distributions of Powder Media in Dies Subjected to Multishock Compactions

[+] Author and Article Information
Y. Sano

Department of Marine Engineering, Kobe University of Mercantile Marine, Higashi-Nada-Ku, Kobe, Japan

J. Eng. Mater. Technol 110(4), 355-360 (Oct 01, 1988) (6 pages) doi:10.1115/1.3226062 History: Received September 16, 1987; Online October 22, 2009


A theoretical attempt to clarify the reason why the compacts of powder media have uniform density distributions as the density of the compacts becomes high, is made for the compaction of the copper powder medium of a simple type by punch impaction. Based on the one-dimensional equation of motion including the effect of die wall friction force, there are two main factors which influence the density distribution of the medium during the compaction process; one is the propagation of the shock wave passing through the medium, while the other is the friction force between the circumferential surface of the medium and the die wall. The equation reveals that the effect of the force increases little as the density becomes high as a result of the repetitive traveling of the shock wave between the punch and plug. The propagation or more definitely the repetitive traveling, on the other hand, increasingly unformalizes the density distribution during the process as the number of the traveling increases. Owing to the aforementioned effects of the two factors on the density distribution during the process, the high density compacts become uniform.

Copyright © 1988 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In