0
RESEARCH PAPERS

Similarity Analysis Applied to the Die Casting Process

[+] Author and Article Information
E. R. G. Eckert

University of Minnesota, Department of Mechanical Engineering, Minneapolis, MN 55455

J. Eng. Mater. Technol 111(4), 393-398 (Oct 01, 1989) (6 pages) doi:10.1115/1.3226485 History: Received May 19, 1988; Revised February 26, 1989; Online September 15, 2009

Abstract

Detailed studies of the filling process of the die with liquid metal and the solidification are necessary to put this technology on a firm scientific basis. An experimental study of the fluid flow, heat transfer, and solidification encounters, however, enormous difficulties. It is extremely fast [in order of milliseconds], the small scale of the die makes local measurements difficult, and the temperature range and the nature of the liquid metal does not lend itself readily to experimentation. This paper explores whether similarity analysis is useful for the design of model experiments which reduce these difficulties and which reproduce the actual occurrence faithfully. The study is carried out in two steps. During the initial period, the whole cavity of the die is available for the fluid. Reynolds and Weber numbers which have to have the same value for the model experiment and for the die casting process permit the use of any fluid and of a large scale model which decreases the injection velocity and increases the filling time. During the later period of the filling process the cavity available for the liquid is reduced by the solidified metal. The energy conservation equation results in two more dimensionless numbers, the Prandtl and Jakob numbers which prescribe that model experiments have now to use a liquid metal but use of a metal with a low melting point and of a large scale decrease again the required injection velocity and increase the filling time by orders of magnitude, conditions beneficial for detailed and accurate experiments.

Copyright © 1989 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In