0
RESEARCH PAPERS

Low-Cycle Fatigue Properties of Steels and Their Weld Metals

[+] Author and Article Information
Y. Z. Itoh, H. Kashiwaya

Heavy Apparatus Engineering Laboratory, Toshiba Corporation, Yokohama, Japan 230

J. Eng. Mater. Technol 111(4), 431-437 (Oct 01, 1989) (7 pages) doi:10.1115/1.3226491 History: Received August 24, 1988; Revised March 21, 1989; Online September 15, 2009

Abstract

Completely reversed, strain-controlled, low-cycle fatigue behavior at room temperature is investigated for steels and their weld metals. Weld metal specimens were taken from multi-pass weld metal deposited by shield metal arc welding (SMAW) and gas metal arc welding (GMAW), such that their gage length consisted entirely of the weld metal. Results indicate that there is a trend toward reduction in the low-cycle fatigue life of weld metals as compared with the base metals. In low carbon steel weld metals, the tendency described above is explained in terms of local plastic strain concentration by lack of uniformity of the multi-pass weld metals. The weld metals do not have the same mechanical properties anywhere as confirmed by hardness distribution, and the fatigue crack grows preferentially through the temper softened region in the multi-pass welds. In Type 308 stainless steel weld metals, the ductility reduction causes reductions in low-cycle fatigue life. This study leads to the conclusion that fairly accurate estimates of the low-cycle fatigue life of weld metals can be obtained using Manson’s universal slope method. However, life estimates of the Type 304 stainless steel is difficult due to a lack of ductility caused by a deformation-induced martensitic transformation.

Copyright © 1989 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In