Progress in the Design of an Improved High-Temperature 1 Percent CrMoV Rotor Steel

[+] Author and Article Information
R. L. Bodnar, J. R. Michael, S. S. Hansen

Homer Research Laboratories, Bethlehem Steel Corporation, Bethlehem, PA 18016

R. I. Jaffee

Electric Power Research Institute, Palo Alto, CA 94303

J. Eng. Mater. Technol 112(1), 99-115 (Jan 01, 1990) (17 pages) doi:10.1115/1.2903194 History: Received September 29, 1988; Revised May 31, 1989; Online April 29, 2008


Silicon-deoxidized, tempered bainitic 1 percent CrMoV steel is currently used extensively for high-temperature steam turbine rotor forgings operating at temperatures up to 565°C due to its excellent creep rupture properties and relative economy. There is impetus to improve the creep rupture strength of this steel while maintaining its current toughness level and vice versa. The excellent creep rupture ductility of the low Si version of this steel allows the use of a higher austenitizing temperature or tensile strength level for improving creep rupture strength without loss in creep ductility or toughness. When the tensile strength of this steel is increased from 785 to 854 MPa, the creep rupture strength exceeds that of the more expensive martensitic 12CrMoVCbN steel currently used for high-temperature rotor applications where additional creep rupture strength is required. The toughness of 1 percent CrMoV steel is improved by lowering the bainite start (Bs ) temperature in a “superclean” base composition which is essentially free of Mn, Si, P, S, Sb, As and Sn. The Bs temperature can be lowered through the addition of alloying elements (i.e., C, Ni, Cr, and Mo) and/or increasing the cooling rate from the austenitizing temperature. Using these techniques, the 50 percent FATT can be lowered from approximately 100°C to below room temperature, which provides the opportunity to eliminate the special precautionary procedures currently used in the startup and shutdown of steam turbines. The most promising steels in terms of creep rupture and toughness properties contain 2.5 percent Ni and 0.04 percent Cb (for austenite grain refinement and enhanced tempering resistance). In general, the creep rupture strength of the superclean steels equals or exceeds that of the standard 1 percent CrMoV steel. In addition, the superclean steels have not been found to be susceptible to temper embrittlement, nor do they alter the room temperature fatigue crack propagation characteristics of the standard 1 percent CrMoV steel. These new steels may also find application in combination high-temperature-low-temperature rotors and gas turbine rotors.

Copyright © 1990 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In