0
RESEARCH PAPERS

Study on the Grinding Mechanism of Glass Fiber Reinforced Plastics

[+] Author and Article Information
H. Inoue, I. Kawaguchi

Department of Mechanical Engineering, University of Osaka Perfecture, 804 Mozu-Umemachi 4-cho, Sakai, Osaka 591 Japan

J. Eng. Mater. Technol 112(3), 341-345 (Jul 01, 1990) (5 pages) doi:10.1115/1.2903335 History: Received October 21, 1988; Revised August 10, 1989; Online April 29, 2008

Abstract

In order to clarify the grinding mechanism of polymer matrix composites, special test specimens were provided. The test specimen is such one that glass yarns are unidirectionally embedded at even interval on the middle plane of thick of a polymer matrix plate. The end face perpendicular to the plane on which glass yarns are lined up is ground in the direction at various angle from the direction of glass yarn. The aspects of the cut end of the glass yarn near the ground surface are observed microscopically, and relations between the angle of the direction of yarn and the topography of the ground surface are investigated. Following results are obtained. (1) The microscopically observed aspects of failure of the end of yarns near the ground surfaces are classified into two modes by the direction of yarn measured counterclockwise from the direction of grinding. In the range from 0 rad. to π/3 rad. of the angle, the failure of the end of yarn is comparatively deep, and spreads over the whole section of the yarn. In the range from π/2 rad. to π rad. of the angle, the failure of the end of the yarn is comparatively shallow, and random in the depth and the spread. (2) The topography is also classified into two types by the above angle. In the range from 0 rad. to π/3 rad. of the angle, the end of yarn forms a hollow pit, and in the range from π/2 rad. to π rad., the end of yarn forms a swollen proturberance. (3) The above facts are well understood by considering the digging up action of the grinding grain in the range from 0 rad. to π/3 rad., and the push down action of the grain in the range from π/2 rad. to π rad. in the grinding process.

Copyright © 1990 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In