0
RESEARCH PAPERS

The Effect of Proof Loading on the Fatigue Behavior of Open Link Chain

[+] Author and Article Information
S. M. Tipton

Mechanical Engineering Department, The University of Tulsa, Tulsa, OK

G. J. Shoup

Amoco Research Center, Tulsa, OK

J. Eng. Mater. Technol 114(1), 27-33 (Jan 01, 1992) (7 pages) doi:10.1115/1.2904136 History: Received January 22, 1991; Revised May 25, 1991; Online April 29, 2008

Abstract

Open link lifting chain is routinely proof loaded during manufacture. However, the effect of residual stresses imposed by this operation on the fatigue strength of the chain has not been quantitatively investigated. This paper discusses the results of constant amplitude fatigue tests on open link chain segments which have received proof loading at various levels. The chain was initially heat treated to relieve manufacturing residual stresses and then proof loaded at levels ranging from 0 to 82 percent of its break strength. Tests were performed at two different mean loads and four different load amplitudes. Failure site trends are noted as a function of applied loading and are correlated with results of a finite element stress analysis. Residual stresses are estimated using strains measured from strain gages placed at critical locations on individual links during the proof load operation. Residual stress estimates are used with standard fatigue damage parameters to estimate the fatigue life of the chain and predictions are compared to data. Proof loading was shown to substantially increase the fatigue life of the chain. Residual stresses can explain the increase in fatigue life. Neuber’s rule demonstrated the ability to model the data trends.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In