The Effect of Matrix Microstructure on Thermally Induced Residual Stresses in SiC/Titanium Aluminide Composites

[+] Author and Article Information
Marek-Jerzy Pindera

Civil Engineering & Applied Mechanics Department, University of Virginia, Charlottesville, VA 22903

Alan D. Freed

Processing Science & Technology Branch, NASA-Lewis Research Center, Cleveland, OH 44135

J. Eng. Mater. Technol 116(2), 215-221 (Apr 01, 1994) (7 pages) doi:10.1115/1.2904276 History: Received March 22, 1993; Online April 29, 2008


This paper examines the effect of varying the microstructural composition of titanium aluminide on the evolution of residual stresses in titanium aluminide matrix composites. An analytical model is developed to determine residual stresses in fiber and matrix phases of unidirectional, SiC/Ti-Al composites subjected to axisymmetric thermal loading. The model uses elements of the concentric cylinder model and the method of cells to calculate residual thermal stresses in the presence of temperature-dependent and inelastic behavior of the fiber and matrix phases. The concentric cylinder model is employed as a geometric model for the unidirectional composite, whereas the method of cells is employed in modeling the microstructure of the titanium aluminide matrix phase. The titanium aluminide matrix consists of distinct brittle and ductile α and β phases whose volume content is varied in the present scheme to understand how the resulting residual stresses can be altered. Both spatially uniform and nonuniform variations of the α and β phases are considered. The results explain the occurrence of radial microcracks in SiC/Ti-Al composites in the presence of a β-depleted region at the fiber/matrix interface, and validate the potential of engineering the matrix phase to reduce residual stresses in these composites.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In