A Study of Kerf Characteristics in Abrasive Waterjet Machining of Graphite/Epoxy Composite

[+] Author and Article Information
D. Arola, M. Ramulu

Department of Mechanical Engineering, FU-10, University of Washington, Seattle, WA 98195

J. Eng. Mater. Technol 118(2), 256-265 (Apr 01, 1996) (10 pages) doi:10.1115/1.2804897 History: Received March 03, 1994; Revised March 19, 1995; Online November 27, 2007


Kerf geometry, kerf wall features, and cutting front characteristics of an Abrasive Waterjet (AWJ) machined Graphite/Epoxy (Gr/Ep) laminate were studied. A macroscopic analyses suggests that geometrical features associated with AWJ machining of Gr/Ep laminates are influenced by three macro regions along the cutting depth. The presence of these regions, including initial damage at jet entry, smooth cutting, and rough cutting near the jet exit, depends on the operating conditions. Design of experiments and analysis of variance were used to determine the effect of cutting parameters on kerf characteristics and to develop empirical models for kerf profile and features of the three distinct macroscopic regions. Cutting front analysis revealed that the mechanisms of material removal in AWJ machining of Gr/Ep do not change over the jet penetration depth. In general, high quality uniform cuts may be obtained by minimizing initial damage at the jet entry and by extending the smooth cutting region beyond the laminate thickness through the appropriate choice of cutting parameters.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In