0
RESEARCH PAPERS

Thermoelastic Finite Element Analysis of Subsurface Cracking Due to Sliding Surface Traction

[+] Author and Article Information
S.-S. Cho, K. Komvopoulos

Department of Mechanical Engineering, University of California, Berkeley, CA 94720

J. Eng. Mater. Technol 119(1), 71-78 (Jan 01, 1997) (8 pages) doi:10.1115/1.2805976 History: Received June 03, 1995; Revised September 19, 1996; Online December 05, 2007

Abstract

A linear elastic fracture mechanics analysis of subsurface crack propagation in a half-space subjected to moving thermomechanical surface traction was performed using the finite element method. The effect of frictional heating at the sliding surface on the crack growth behavior is analyzed in terms of the coefficient of friction, crack length-to-depth ratio, and Peclet number. The crack propagation characteristics are interpreted in light of results for the directions and magnitudes of the maximum shear and tensile stress intensity factor ranges, respectively. It is shown that, while frictional heating exhibits a negligible effect on the crack propagation direction, it increases the in-plane crack growth rate and reduces the critical crack length at the onset of out-of-plane crack growth at the right tip due to the tensile mechanism (kink formation). The effect of frictional heating becomes more pronounced with increasing contact friction, crack length-to-depth ratio, and Peclet number. Crack mechanism maps showing the occurrence of opening, slip, and stick regions between the crack surfaces are presented for different values of crack length-to-depth ratio, coefficient of friction, and position of thermomechanical surface traction.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In