0
TECHNICAL PAPERS

Bimaterial Interfacial Crack Growth With Strain Gradient Theory

[+] Author and Article Information
Su Hao, Wing Kam Liu

Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208

J. Eng. Mater. Technol 121(4), 413-421 (Oct 01, 1999) (9 pages) doi:10.1115/1.2812396 History: Received February 08, 1999; Revised May 07, 1999; Online November 27, 2007

Abstract

The purpose of this paper is to investigate the effect of material heterogeneity on damage evolution and subsequent crack propagation in bimaterial systems. Strain gradient theory analysis reveals that a higher stress triaxiality always occurs on the softer material side due to the material mismatch in yield capacity and the corresponding strain gradient along the interface. High stress triaxiality is a major condition which promotes ductile damage and facilitates crack growth. To investigate this link, numerical simulations of ductile interface crack growth are performed using a damage based constitutive model. Both the numerical and experimental results show that a crack may grow along the interface or deviate into the softer material, but never turn into the harder material. The theoretical and numerical analysis reveal three factors which strongly affect the direction of crack growth and the resistance capacity of the bimaterial system against fracture. These are the boundary conditions which determine the global kinematically admissible displacement field, the stress/strain gradient near the interface due to the material mismatch, and the distance from the crack tip to the interface.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In