Juul Jensen,
D., and Hansen,
N., 1990, “Flow Stress Anisotropy in Aluminum,” Acta Metall. Mater., 38, No. 8, pp. 1369–1380.

Hansen,
N., and Juul Jensen,
J., 1992, “Flow Stress Anisotropy Caused by Geometrically Necessary Boundaries,” Acta Metall. Mater., 40, pp. 3265–3275.

Hostord,
W. F., and Zeisloft,
R. H., 1972, “The Anisotropy of Age-Hardened Al-4 Pct Cu Single Crystals During Plain-Strain Compression,” Metall. Trans., 3, pp. 113–147.

Bate,
P., Roberts,
W. T., and Wilson,
D. V., 1981, “The Plastic Anisotropy of Two-Phase Aluminum Alloys-I. Anisotropy in Unidirectional Deformation,” Acta Metall., 29, pp. 1797–1814.

Barlat,
F., Liu,
J., and Weiland,
H., 1996, “On Precipitate-Induced Anisotropy Modeling in Binary Al-Cu Alloys,” Mater. Sci. Forum, 217–222, pp. 635–640.

Hatch, J. E. (ed.), 1984, *Aluminum: Properties and Physical Metallurgy*, American Society for Metals, Metals Park, pp. 376–377.

Hill,
R., 1948, “A Theory of the Yield and Plastic Flow of Anisotropic Metals,” Proc. R. Soc. London, Ser. A, 193, pp. 281–297.

Stout,
M. G., Hecker,
S. S., and Bourcier,
R., 1983, “An Evaluation of Anisotropic Effective Stress-Strain Criteria for the Yield and Flow of 2024, Aluminum Tubes,” ASME J. Eng. Mater. Technol., 105, pp. 242–249.

Harvey, S. J., 1985, “The Use of Anisotropic Yield Surfaces in Cyclic Plasticity,” *Multiaxial Fatigue*, ASTM STP 853, ASTM, Philadelphia, PA, pp. 49–53.

Barlat,
F., 1987, “Crystallographic Texture, Anisotropic Yield Surfaces and Forming Limits of Sheet Metals,” Mater. Sci. Eng., 91, pp. 55–72.

Lin, H., and Nayeb-Hashemi, H., 1993, “Effects of Material Anisotropy on Cyclic Deformation and Biaxial Fatigue Behavior of Al-6061 T6,” *Advances in Multiaxial Fatigue*, ASTM STP 191, McDowell and Ellis, eds., ASTM, Philadelphia, pp. 151–182.

Karafillis,
A. P., and Boyce,
M. C., 1993, “General Anisotropic Yield Criterion Using Bounds and a Transformation Weighting Tensor,” J. Mech. Phys. Solids, 41, No. 12, pp. 1859–1886.

Sachs,
G., 1928, “Zur Ableitung Einer Fliessbedingung,” A. Ver. dt. Ing., 12, pp. 134–136.

Taylor,
G. I., 1938, “Plastic Strain in Metals,” J. Inst. Met., 62, pp. 307–324.

Iwakuma,
T., and Nemat-Nasser,
S., 1984, “Finite Elastic-Plastic Deformation of Polycrystalline Metals,” Proc. R. Soc. London, Ser. A, 394, pp. 87–119.

Asaro,
R. J., and Needleman,
A., 1985, “Texture Development and Strain Hardening in Rate Dependent Polycrystals,” Acta Metall., 33, pp. 923–953.

Kocks, U. F., 1987, “Constitutive Behavior Based on Crystal Plasticity,” *Unified Constitutive Equations for Plastic Deformation and Creep of Engineering Alloys*, A. K. Miller, ed., Elsevier, New York, pp. 1–88.

Molinari,
A., Canova,
G. R., and Ahzi,
S., 1987, “A Self Consistent Approach of the Large Deformation Polycrystal Viscoplasticity,” Acta Metall., 35, No. 123, pp. 2983–2994.

Mathur,
K. K., and Dawson,
P. R., 1989, “On Modeling the Development of Crystallographic Texture in Bulk Forming Processes,” Int. J. Plast., 5, pp. 67–94.

Lipinski,
P., and Berveiller,
M., 1989, “Elastoplasticity of Micro-Inhomogeneous Metals at Large Strain,” Int. J. Plast., 5, pp. 149–172.

Mathur,
K. K., Dawson,
P. R., and Kocks,
U. F., 1990, “On Modeling Anisotropy in Deformation Processes, Involving Polycrystals with Distorted Grain Shapes,” Mech. Mater., 10, pp. 183–202.

Cailletaud,
G., 1992, “a Micromechanical Approach to Inelastic Behavior of Metals,” Int. J. Plast., 8, pp. 55–73.

Lebensohn,
R. A., and Tome,
C. N., 1994, “A Self-Consistent Viscoplastic Model: Prediction of Rolling Textures of Anisotropic Polycrystals,” Mater. Sci. Eng., A, 175, pp. 71–82.

Zouhal,
N., Molinari,
A., and Toth,
L. S., 1996, “Elastic-Plastic Effects During Cyclic Loading as Predicted by the Taylor-Lin Model of Polycrystal Viscoplasticity,” Int. J. Plast., 12, No. 3, pp. 343–360.

Feyel,
F., Calloch,
S., Marquis,
D., and Cailletaud,
G., 1997, “F. E. Computation of a Triaxial Specimen Using a Polycrystalline Model,” Comput. Mater. Sci., 9, pp. 141–157.

Molinari,
A., Ahzi,
S., and Kouddane,
R., 1997, “On the Self-Consistent Modeling of Elastic-Plastic Behavior of Polycrystals,” Mech. Mater., 26, pp. 43–62.

Harren,
S. V., and Asaro,
R. J., 1989, “Nonuniform Deformations in Polycrystals and Aspects of the Validity of the Taylor Theory,” J. Mech. Phys. Solids, 37, pp. 191–232.

McHugh,
P. E., Varias,
A. G., Asaro,
R. J., and Shih,
C. F., 1989, “Computational Modeling of Microstructures,” Future Gen. Comp. Sys., 5, pp. 295–318.

Havliček,
F., Tokuda,
M., Hino,
S., and Kratochvil,
J., 1992, “Finite Element Method Analysis of Micro-Macro Transition in Polycrystalline Plasticity,” Int. J. Plast., 8, pp. 477–499.

Dawson, P. R., Beaudoin, A. J., and Mathur, K. K., 1994, “Finite Element Modeling of Polycrystalline Solids,” *Numerical Predictions of Deformation Processes and the Behavior of Real Materials*, Anderson et al., eds., Riso National Laboratory, Roskilde, Denmark, pp. 33–43.

Beaudoin,
A. J., Dawson,
P. R., Mathur,
K. K., and Kocks,
U. F., 1995, “A Hybrid Finite Element Formulation for Polycrystal Plasticity with Consideration of Macrostructural and Microstructural Linking,” Int. J. Plast., 11, pp. 501–521.

Beaudoin, A. J., Mecking, H., and Kocks, U. F., 1995, “Development of Local Shear Bands and Orientation Gradients.” *Simulation of Materials Processing: Theory, Methods, and Applications*, Shen and Dawson, eds., Balkema, Rotterdam, pp. 225–230.

Mika,
D. P., and Dawson,
P. R., 1998, “Effects of Grain Interaction on Deformation in Polycrystals,” Mater. Sci. Eng., A, 257, pp. 62–76.

Mika, D. P., and Dawson, P. R., 1999, “Polycrystal Plasticity Modeling of Intracrystalline Boundary Textures,” Acta Mater (in press).

Czyzak,
S. J., Bow,
N., and Payne,
H., 1961, “On the Tensile Stress-Strain Relation and the Bauschinger Effect for Polycrystalline Materials From Taylor’s Model,” J. Mech. Phys. Solids, 9, pp. 63–66.

Hutchinson,
J. W., 1964, “Plastic Stress-Strain Relations of FCC Polycrystalline Metals Hardening According to Taylor’s Rule,” J. Mech. Phys. Solids, 12, pp. 11–24.

Hutchinson,
J. W., 1964, “Plastic Deformation of BCC Polycrystals,” J. Mech. Phys. Solids, 12, pp. 25–33.

Barton,
N., Dawson,
P. R., and Miller,
M. P., 1999, “Yield Strength Asymmetry Predictions from Polycrystal Elastoplasticity,” ASME J. Eng. Mater. Technol., 121, pp. 230–239.

Kallend,
J. S., Kocks,
U. F., Rollett,
A. D., and Wend,
H., 1991, “Operational Texture Analysis,” Mater. Sci. Eng., A, 132, pp. 1–11.

Frank,
F. C., 1988, “Orientation Mapping,” Metall. Trans. A, 19A, pp. 403–408.

Becker,
S., and Panchanadeeswaran,
S., 1989, “Crystal Rotations Represented as Rodriguez Vectors,” Textures Microstruct., 10, pp. 167–194.

Mitchell, M. R., 1978, “Fundamentals of Modern Fatigue Analysis for Design,” Fatigue Microstructure, pp. 385–438.

Marin,
E. B., and Dawson,
P. R., 1998, “On Modeling the Elasto-Viscoplastic Response of Metals Using Polycrystal Plasticity,” Comput. Methods Appl. Mech. Eng., 165, pp. 1–21.

Miller,
M. P., and Dawson,
P. R., 1997, “Influence of Slip System Hardening Assumptions on Modeling Stress Dependence of Work Hardening,” J. Mech. Phys. Solids, 45, pp. 1781–1804.

Kocks, U. F., Tome, C. N., and Wenk, H.-R., 1998, *Texture and Anisotropy*. Cambridge University Press, Cambridge, p. 365 ff.

Wright,
S. I., and Adams,
B. L., 1990, “An Evaluation of the Single Orientation Method for Texture Determination in Materials of Moderate Texture Strength,” Textures Microstruct., 12, pp. 65–76.

Baudin,
T., and Penelle,
1993, “Determination of the Total Texture Function from Individual Orientation Measurements by Electron Backscattering Pattern,” Metall. Trans. A, 24A, pp. 2299–2311.

Wright, S. I., and Kocks, U. F., 1996, “A Comparison of Different Texture Analysis Techniques,” *Proceedings of the Eleventh International Conference on Textures of Materials*, Liang, Zuo, and Chu, eds., The Metallurgical Society, pp. 53–62.

Miller, M. P., and Turner, T. J., 1999, “Quantification and Representation of Crystallographic Texture Fields in Processed Alloys,” Int. J. Plast. (accepted).