Fracture Static Mechanisms on Fatigue Crack Propagation in Microalloyed Forging Steels

[+] Author and Article Information
M. A. Linaza, J. M. Rodriguez-Ibabe

CEIT and ESII de San Sebastián, Pde Manuel de Lardizabal, 15, 20018, San Sebastián, Basque Country, Spain

J. Eng. Mater. Technol 122(2), 198-202 (Oct 14, 1999) (5 pages) doi:10.1115/1.482787 History: Received April 13, 1999; Revised October 14, 1999
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.


Ritchie,  R. O., and Knott,  J. F., 1973, “Mechanisms of Fatigue Crack Growth in Low Alloy Steels,” Acta Met., 21, p. 639.
Beevers,  C. J., Cooke,  R. J., Knott,  J. F., and Ritchie,  R. O., 1975, “Some Considerations of the Influence of Subcritical Cleavage Growth During Fatigue-Crack Propagation in Steels,” Met. Sci., 9, p. 119.
Nicholson,  A., and Gladman,  T., 1986, “Non-Metallic Inclusions and Development in Secondary Steelmaking” Ironmaking and Steelmaking, 13, p. 53.
Wilson, A. D., 1984, “Fatigue Crack Propagation in Steels: The Role of Inclusions,” Fracture: Interactions of Microstructure, Mechanisms and Mechanics, J. M. Wells and J. D. Landes, eds., AIME, p. 235.
Naylor,  D. J., 1989, “Review of International Activity on Microalloyed Engineering Steels” Ironmaking and Steelmaking, 16, p. 246.
Naylor,  D. J., 1998, “Microalloyed Forging Steels” Mater. Sci. Forum, 284–286, p. 83.
Linaza,  M. A., Rodriguez-Ibabe,  J. M., and Urcola,  J. J., 1997, “Determination of the Energetic Parameters Controlling Cleavage Fracture Initiation in Steels,” Fatigue Fract. Eng. Mater. Struct., 20, p. 619.
LaGreca, P. D., Matlock, D. K., and Krauss, G., 1996, “Short-rod Fracture Toughness Testing of Microalloyed Steels as a Function of Sulfur and Intragranular Ferrite Content,” Fundamentals and Applications of Microalloyed Forging Steels, C. J. Van Tyne et al., eds., TMS, Warrendale, p. 357.
Linaza,  M. A., Romero,  J. L., Rodriguez-Ibabe,  J. M., and Urcola,  J. J., 1993, “Influence of the Microstructure on the Fracture Toughness and Fracture Mechanisms of Forging Steels Microalloyed with Ti with Ferrite-Pearlite Structures,” Scr. Metall. Mater., 29, p. 451.
Linaza,  M. A., Romero,  J. L., Rodriguez-Ibabe,  J. M., and Urcola,  J. J., 1995, “Cleavage Fracture of Microalloyed Forging Steels,” Scr. Metall. Mater., 32, p. 395.
Tanaka, Y., and Soya, Y., 1990, “Metallurgical and Mechanical Factors Affecting Fatigue Crack Propagation and Crack Closure in Various Structural Steels,” Fatigue 90, H. Kitagawa and T. Tanaka, eds., MCE Publications, Vol. 2 , p. 1143.
Costa,  J. D. M., and Ferreira,  J. A. M., 1998, “Effect of Stress Ratio and Specimen Thickness on Fatigue Crack Growth of CK45 Steel,” Theor. Appl. Fract. Mech., 30, p. 65.
Rodriguez-Ibabe, J. M., and Gil-Sevillano, J., 1984, “Fatigue Crack Path in Medium-high Carbon Ferrite-Pearlite Structures,” Advances in Fracture Research, S. R. Valluri et al., eds., Pergamon Press, 3 , p. 2073.
Bulloch,  J. H., 1992, “Effects of Mean Stress on the Threshold Fatigue Crack Extension Rates of Two Spherical Graphite Cast Irons,” Theor. Appl. Fract. Mech., 18, p. 15.
Linaza, M. A., Rodriguez-Ibabe, J. M., and Fuentes, M., 1992, “Fatigue Crack Growth and Closure Behavior of Pressure Vessel C-Mn Welded Steels,” Reliability and Structural Integrity of Advanced Materials, S. Sedmak et al., eds., EMAS, Vol. 1, p. 397.
Herman, J. C., Messien, P., and Greday, T., 1982, “HSLA Ti Containing Steels,” Thermomechanical Processing of Microalloyed Austenite, A. J. DeArdo et al., eds., AIME, Warrendale, p. 655.
Brooksbank,  D., and Andrews,  K. W., 1968, “Thermal Expansion of Some Inclusions Found in Steels and Relation to Tessellated Stresses,” JISI, 206, p. 595.
Bowen,  P., Druce,  S. G., and Knott,  J. F., 1987, “Micromechanical Modelling of Fracture Toughness,” Acta Metall., 35, p. 1735.
Landes,  J. D., Heerens,  J., Schwalbe,  K. H., and Petrovski,  B., 1993, “Size, Thickness and Geometry Effects on Transition Fracture,” Fatigue Fract. Eng. Mater. Struct., 16, p. 1135.
Linaza, M. A., Romero, J. L., Rodriguez-Ibabe, J. M., and Urcola, J. J., 1997, “Influence of Thermomechanical Treatments on the Microstructure and Toughness of Microalloyed Engineering Steels,” Thermomechanical Processing in Theory, Modelling and Practice, B. Hutchinson et al., eds., SFMC, p. 351.
Knott, J. F., and King, J. E., 1990, “Fatigue in Metallic Alloys Containing Non-Metallic Particles,” Fatigue 90, H. Kitagawa and T. Tanaka, eds., MCE Publications, Vol. 4 , p. 2557.
San Martin,  I., and Rodriguez-Ibabe,  J. M., 1999, “Determination of the Energetic Parameters Controlling Cleavage Fracture in a Ti-V Microalloyed Ferrite-Pearlite Steel,” Script. Mat., 40, p. 459.
Bompard, P. H., and François, D., 1984, “Effect of Porosity on Fatigue Crack Propagation in Sintered Nickel,” Advances in Fracture Research, S. R. Valluri et al., eds., Vol. 3 , p. 2049.


Grahic Jump Location
da/dN−ΔK fatigue crack propagation curves of as-rolled ferrite-pearlite Ti steel
Grahic Jump Location
da/dN−ΔK fatigue crack propagation curves of Ti-V microalloyed steel for different ferrite-pearlite and acicular ferrite microstructures developed by thermomechanical treatments
Grahic Jump Location
Fracture surface in the Paris zone of Ti-V steel with as-rolled ferrite-pearlite microstructure showing ductile voids nucleated at inclusions (R=0.5,da/dN=1.2×10−7 m/c)
Grahic Jump Location
Brittle island in the Paris region originated by the rupture of a TiN coarse particle (Ti steel, R=0.03)
Grahic Jump Location
Paris equations of Ti-V and Ti steels for R=0.5. Results obtained with a ferrite-pearlite C-Mn steel are included (Linaza et al. 15).
Grahic Jump Location
Histograms of the minimum and maximum dimensions of coarse TiN particles in the Ti-V steel




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In