0
TECHNICAL PAPERS

Time Model of Rubber Deformation

[+] Author and Article Information
J. Le Guen

Po⁁le élastomère PSA, 194, route de Lorient, Rennes, France

F. Thouverez

Ecole Centrale de Lyon, 36, Ave G. de Collongue, 69130 Ecully, France

G. Demoulin

PSA Peugeot Citroën, 18 rue des Fauvelles, 92250 La Garenne Colombes, France

L. Jezequel

Ecole Centrale de Lyon, 36, Ave. G. de Collongue, 69130 Ecully, France

J. Eng. Mater. Technol 123(1), 36-44 (Mar 03, 2000) (9 pages) doi:10.1115/1.1288212 History: Received February 16, 1999; Revised March 03, 2000
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Perez, J., 1992, “Physique et mécanique des polymères amorphes,” Paris, Technique et Documentaton.
Oudet, C., 1993, Polymères structure et propriètès, Masson.
Persoz, B., 1960, Introduction à l’étude de la rhéologie, Ed. Dunod.
Smith,  T. L., 1958, “Approximate equations for interconverting the various properties of linear viscoelastic materials,” Trans. Soc. Rheol., II, pp. 131–151.
Christensen,  R. M., 1980, “A nonlinear theory of viscoelasticity for applications to elastomers,” Trans. ASME, 47, Dec, pp. 762–768.
Sullivan,  J. L., 1983, “Viscoelastic properties of a gum vulcanizate at large static deformations,” J. Appl. Polym. Sci., 28, pp. 1993–2003.
Hibbit,  H. D., Marcal,  P. V., and Rice,  J. R., 1970, “A finite element formulation for problems of large strain and large displacement,” Int. J. Solids Struct., 6, pp. 1069–1086.
Oden, J. T., 1972, Finite elements of non-linear continua, Mc Graw-Hill, New York.
Fages, A., 1993, “Modélisation du comportement des matériaux viscoélastiques,” Matér. Tech., 12 , No. 12.
Bagley,  R. L., and Torvik,  P., 1983, “A theoretical basis for the application of fractional calculus to viscoelasticity,” J. Rheol., 27, pp. 201–210.
Bagley, R. L., and Torvik, P., 1979, “A generalized derivative model for an elastomer damper,” Shock and Vibration Bulletin, 49 , No. 49, Sept.
Bagley,  R. L., and Torvik,  P., 1986, “On the fractional calculus model of viscoelastic behavior,” J. Rheol., 30, pp. 233–255.
Gerardin, M., and Rixen, D., 1992, Théorie des Vibrations, Masson.
Ogden, R. W., 1984, Non-Linear Elastic Deformations, Wiley, NY.
Treloar, L. R. G., 1958, The Physics of Rubber Elasticity, 2nd Ed., Oxford, Clarendon Press.
Rivlin,  R. S., 1948, “Large elastic deformation of isotropic materials I. Fundamental concepts,” Philos. Trans. R. Soc., A240, pp. 459–490.
Heuillet, P., and Roumagnac, P., 1995, “Modélisation du comportement hyperélastique des caoutchoucs et élastomères themoplastiques, compact ou cellulaires,” Congres S.I.A.
Lockett,  F. J., 1965, “Creep and stress relaxation experiments for non-linear materials,” Int. J. Eng. Sci., 3, pp. 59–75.
Soulimani, Alaoui, 1993, “Méthode énegétique de modélisation de la viscoélasticité non linéaire en grandes déformations,” Thèse de l’Ecole Nationale des Ponts et Chaussées, Paris, France.
Snowdon, J. C., 1968, Vibration and Shock in Damped Mechanical Systems, Wiley, New York.
Rouse,  P. E., 1953, “A theory of the linear viscoelastic properties of dilute solution of coiling polymers,” J. Chem. Phys., 21, No. 7, July, pp. 1272–1280.
Liouville,  J., 1832, “Memoire sur le calcul des différentielles à indices queconques,” J. Ec. Polytech. (Paris), 13, No. 221, pp. 71–162.
Gaul,  L., and Schanz,  M., 1994, “Dynamics of viscoelastic solids treated by boundary element approaches in time domain,” Eur. J. Mech. A/Solids, 13, No. 4, Suppl., pp. 43–59.
Soula,  M., Vinh,  T., and Chevalier,  Y., 1996, “Etudes dynamiques des polymères et elastomères par les dérivées fractionnaires,” Méc. Ind. Matér., 49, No. 2, June, pp. 101–103.
Berardi, G., 1995, “Modélisation numèrique du comportement thermo-viscoélastique en grandes déformations,” Thèse de l’Université de Provence, Marseille, France.
Ferry, J. D., 1980, Viscoelastic Properties of Polymers, 3rd ed., Wiley, New York.
Zienkiewicz, O. C., and Taylor, L., 1977, The Finite Element Method (Vols. 1 and 2), 4th Ed., Mc Graw-Hill, NY.
Imbert, J. F., 1979, Analyse des structures par elements finis, Cepadues edition.

Figures

Grahic Jump Location
Schématic view of the simple bush under torsion
Grahic Jump Location
Simple bush under shearing
Grahic Jump Location
Simple bush under torsion
Grahic Jump Location
Schématic view of the simple bush under shearing and compression
Grahic Jump Location
Diagram of the principle
Grahic Jump Location
Test correlation of the simple bush
Grahic Jump Location
Test correlation of the Saxo bush
Grahic Jump Location
Simple bush under shearing
Grahic Jump Location
Saxo bush under radial compression
Grahic Jump Location
Dynamic stiffness of the simple bush
Grahic Jump Location
Damping of the simple bush

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In