Micromechanical Approach of Lamellar Nano-Composites: Influence of the Microstructure on the Yield Strength

[+] Author and Article Information
R. Krummeich, H. Sabar, M. Berveiller

Laboratoire de Physique et Mécanique des Matériaux, Institut Supérieur de Génie Mécanique et Productique, UMR CNRS 7554, Ile du Saulcy, Université de Metz, 57045 Metz Cedex 01-France

J. Eng. Mater. Technol 123(2), 216-220 (Dec 18, 1999) (5 pages) doi:10.1115/1.1286159 History: Received July 22, 1999; Revised December 18, 1999
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.


Taylor,  G. I., 1938, “Plastic Strains in Metals,” J. Inst. Met., 62, p. 307.
Berveiller, M., and Zaoui, A., 1981, “Méthodes Self-Consistentes en Mécanique des Solides Hétérogènes, Comportement Rhéologiques et Structure des Matériaux,” C. Huet and A. Zaoui, eds., p. 175.
Kröner,  E., 1961, “Zur plastischen Verformung des Vielkristalls,” Acta Metall., 9, p. 155.
Hill,  R., 1965, J. Mech. Phys. Solids, 13, p. 89.
Lipinski,  P., and Berveiller,  M., 1989, “Elastoplasticity of Micro-Inhomogeneous Metals at Large Strains,” Int. J. Plast., 5, p. 149.
Lipinski,  P., Krier,  J., and Berveiller,  M., 1990, “Elastoplasticité des Métaux en Grandes Déformations: Comportement Global et Évolution de la Structure Interne,” Rev. Phys. Appl., 25, p. 361.
Louchet, F., 1999, “A Few Simple Considerations on the Specific Plastic Properties of Nanoscaled Multilayers and Equivalent Systems,” Proc. in the 7th Int. Symp. on Plasticity and its Current Applications, Plasticity 99, Mexico, S. Kahn, ed., pp. 585–588.
Gil Sevillano,  J., 1991, “Substructure and Strenghtening of Heavily Deformed Single and Two Phase Metallic Materials,” J. Phys. III, 1, pp. 967–988.
Janecek, M., Louchet, F., Doisneau-Cottignies, B., Brechet, Y., and Guelton, N., Philos. Mag., to be published.
Hirth,  J. P., 1972, Metall. Trans., 3, pp. 3047–3066.
Li,  J. C. M., and Chou,  Y. T., 1970, Metall. Trans., 1, pp. 1970–1145.
Eshelby,  J. D., 1957, “The Determination of the Elastic Field of an Ellipsoidal Inclusion,” Proc. Roy. Soc., A241, p. 376.
Aubert,  I., and Berveiller,  M., 1997, “Constrained and Unstable Expansion of Dislocation Loops Using an Invariant Formulation of the Free Energy,” Mechanics of Materials, 26, pp. 127–137.
Boehler,  J. P., 1979, “Introduction to the Invariant Formulation of Anisotropic Constitutive Equations,” ZAMM, 59, pp. 157–167.
Mura, T., 1982, Micromechanics of Defects in Solids, M. Nijhoff Publishers.
Zhou,  D. S., and Shiflet,  G. J., 1992, Metall. Trans. A, 23A, pp. 1259–1269.
Langford,  G., 1977, “Deformation of Pearlite,” Metall. Mater. Trans. A, 8A, pp. 861–875.
Embury,  J. D., 1992, “Micromechanical Descriptions of Heavily Deformed Materials,” Scr. Metall. Mater., 27, pp. 981–986.
Marder,  A. R., and Bramfitt,  B. L., 1976, Metall. Trans. A, 7A, pp. 365–372.
Dollar,  M., Bernstein,  I. M., and Thompson,  A. W., 1988, “Influence of Deformation Substructure on Flow and Fracture of Fully Pearlitic Steel,” Acta Metall., 36, No. 2, pp. 311–320.


Grahic Jump Location
Evolution of the resolved critical shear stress (CRSS) vs ρ (3a) and κ (through m(κ) 3b) with three gliding directions: the lower bound (1) is for a “small-axis” parallel direction of glide, the upper (2) is the “large-axis” parallel glide direction, in between (3) is for a mixed direction
Grahic Jump Location
Evolution of the critical resolved shear stress with possible glide directions : (1) the lower bound is for a “large-axis” parallel direction of glide, the upper (2) is the “small-axis” parallel direction constrained by the presence of a rigid interface, in between (3) is for a mixed one
Grahic Jump Location
Free energy representation in an iso-morphology plane (ϕ1,ρ) with ϕ1=(1/2)Σ:C−1:Σ−ψ(Σ,εp),p13=p31=1/2,p23=p32=0,τ31=25 MPa
Grahic Jump Location
Description of the system with the flat ellispoid orthotropic basis (ν123) oriented in the elastic medium’s basis (e1,e2,e3);mα is unit normal of the glide plane




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In