0
TECHNICAL PAPERS

Superimposing Ultrasonic Waves on the Dies in Tube and Wire Drawing

[+] Author and Article Information
Klaus Siegert, Jochen Ulmer

Institute for Metal Forming Technology, University of Stuttgart, Stuttgart, Germany

J. Eng. Mater. Technol 123(4), 517-523 (Jul 24, 2001) (7 pages) doi:10.1115/1.1397779 History: Received July 24, 2001
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Sansome,  D. H., 1973, “Recent developments in oscillatory metalworking,” Engineering, Apr., pp. 243–247.
Jones, J. B., 1967, “Ultrasonic metal deformation processing,” CIRP International Conference on Manufactoring Technology, pp. 983–1006.
Garskii, F. K., and Efromov, V. I., 1953, “Effect of ultrasound on the decomposition of solid solutions,” Izv. Akad. Nauk, Beloroussk SSR, No. 3.
Blaha,  F., and Langenecker,  B., 1955, “Dehnung von Zink-Einkristallen unter Ultraschalleinwirkung,” Naturwissenschaften, 42, p. 556.
Maropis,  N., 1991, “Ultrasonic energy applied to metal drawing—Part I,” Wire Industry, 58, No. 689, pp. 251–253, Part II. , 58, No. 690, pp. 327–333, Part III. , 58, No. 691, pp. 371–373.
Lehfeldt, E., 1968, “Beeinflussung metallischer Reibungsvorgänge durch Schall im 20 kHz-Bereich,” Diss. RWTH Aachen.
Adachi,  K., 1996, “The micro-mechanism of friction drive with ultrasonic wave,” Wear, 194, pp. 137–142.
Liu,  Y., , 1992, “Ultraschallwellen reduzieren Reibkraft beim Gleiten,” Tribologie und Schmierungstechnik, 39, No. 4.
Liu,  Y., , 1990, “Reibkraftverringerung gleitender fester Körper durch Ultraschallwellen,” Tribologie und Schmierungstechnik, 37, No. 5.
Schey, J. A., 1983, “Tribology in Metalworking,” American Society for Metals, pp. 93–94, pp. 375–376.
Möllers,  J., and Fischer,  F., 1975, “Über den Einfluß von Ultraschall auf die Reibung beim Tiefziehen,” Bänder Bleche Rohre, 11, pp. 457–460.
Siegert, K., et al., 1996, “Flexible micro metal forming with ultrasonically oscillating dies,” Production Engineering III/2, pp. 25–28.
Böhm, E., 1962, “Neue Versuche an Kadmium-Einkristallen,” Dissertation, Universität Wien.
Izumi, O., Oyama, K., and Suzuki, Y., “Effects of superimposed ultrasonic vibration on compressive deformations of metals,” The Research Institute of Iron, Steel and other Metals, Tohoku, University Sendai, Japan.
Sansome, D. H., 1989, “Engineering developments in ultrasonic tube-drawing-equipment,” ITA Conference Tube 89, Singapore, Oct.
Siegert,  K., and Möck,  A., 1996, “Wire drawing with ultrasonically oscillating dies,” J. Mater. Process. Technol., 60, pp. 657–660.
Moeck, A., 1999, “Beitrag zur Wirkung des Ultraschalls auf das Umformen am Beispiel des Draht und Rohrziehens mit in Eigenfrequenz schwingender Matrize,” Dissertation, Universität Stuttgart, in print.
Lucas, M., 1989, “Schwingungsanalyse bei Ultraschall-frequenzen,” 12th Biennial Conf. On Mech. Vibr. Noise, DE184, Sept., pp. 235–240.
Lucas,  M., 1996, “Vibration sensitivity in the design of ultrasonic forming dies,” Ultrasonics, 34, pp. 35–41.
Siebel,  E., 1947, “Der derzeitige Stand der Erkenntnisse über die mechanischen Vorgänge beim Drahtziehen,” Stahl und Eisen,66/67, 11/12 , pp. 171–180.
Malek, R., 1997, “Beitrag zum Rohrziehen mit ultraschallerregtem Dorn,” Dissertation, Universität Stuttgart, Beiträge zur Umformtechnick, 15, DGM Informationsgesellschaft Verlag.
Malek, R., 1995, “Rohrziehen mit ultraschallerregtem Dorn,” Neuere Entwicklungen in der Massivumformung, K. Siegert, ed., pp. 457–475.
Winsper,  C. E., Dawson,  G. R., and Sansome,  D. H., 1970, “An introduction to the mechanics of oscillatory metalworking,” Metals and Materials, Apr., pp. 158–162.
Siegert,  K., and Ulmer,  J., 1998, “Reduction in sliding friction through ultrasonic waves,” Production Engineering, 5, No. 1, pp. 25–28.
SFB 543, Teilprojekt A2, Forschungsbericht 1. Förderperiode, Universität Stuttgart, 2000.
Siegert, K., et al., 1999, “Development of a portable sensor for the three-dimensional measurement of sheet and tool surfaces,” SAE Technical paper Series 1999-01-0684, International Congress, Michigan, Mar. 1–4.

Figures

Grahic Jump Location
Wire-drawing experiment
Grahic Jump Location
Surface roughness versus drawing velocity for two different strains, US-amplitude 10 μm, lubrication: boric anhydride, material: stainless steel, die: hard alloy die shrunk in a half-wavelength-oscillator 17
Grahic Jump Location
Relative force reduction versus US-amplitude for three different strains, drawing velocity: 13,2 mm/s, lubrication: boric anhydride, material: stainless steel, die: hard alloy die shrunk in a half-wavelength-oscillator 17
Grahic Jump Location
Die mounting and oscillation system 17
Grahic Jump Location
Wire-drawing experiment, assumption, PKD-die, drawing velocity: 340 mm/s, wire material: Ti-alloy, lubricant: mineral oil without additives, viscosity at 40°C: 50*10−6 m2/s, quantity of lubricant: 1 g/m2 , ultrasonic power: 150–250 W
Grahic Jump Location
Friction coefficient versus drawing velocity with and without superimposed ultrasonic vibrations, die material: 1.2379, sheet material: AK-steel, lubricant: mineral oil without additives, viscosity at 40°C: 10, 50, 100, 200*10−6 m2/s, quantity of lubricant: 1 g/m2 , normal force: 433 N, ultrasonic power: 570 W 24
Grahic Jump Location
Surface-scan, drawing velocity: 200 mm/s, die material: 1.2379, sheet material: AK-steel, lubricant: mineral oil without additives, viscosity at 40°C: 50*10−6 m2/s, quantity of lubricant: 1 g/m2 , normal force: 433 N, ultrasonic power: 570 W
Grahic Jump Location
Abbott curves with and without the influence of ultrasound, drawing velocity: 200 mm/s, die material: 1.2379, sheet material: AK-steel, lubricant: mineral oil without additives, viscosity at 40°C: 50*10−6 m2/s, quantity of lubricant: 1 g/m2 , normal force: 433 N, ultrasonic power: 570 W
Grahic Jump Location
Three-dimensional Abbott-curves calculated out of stripe-projection measurements. PKD-die, drawing velocity: 340 mm/s, wire material: Ti-alloy, lubricant: mineral oil without additives, viscosity at 40°C: 50*10−6 m2/s, quantity of 100–250 W.
Grahic Jump Location
Cu-alloy surfaces without (left) and with acoustic vibration (right)
Grahic Jump Location
Comparison between experimental results and theoretical predictions of the drawing force with the upgraded Siebel-Theory for the ultrasonic wire-drawing experiment
Grahic Jump Location
Excitation principles in ultrasonic tube-drawing
Grahic Jump Location
Reduction of the drawing force with ultrasonic vibration 21. Copper Cu58, drawing velocity 340 mm/s, ultrasonic frequency 22 kHz, ultrasonic amplitude 13 μm, lubricant mineral oil without additives, viscosity at 40°C: 300*10−6 m2/s.
Grahic Jump Location
Inner surface of a tube without (upper) and with ultrasonic vibrations (lower) 21, copper Cu58, drawing velocity 340 mm/s, ultrasonic frequency 22 kHz, ultrasonic amplitude 13 μm, lubricant mineral oil without additives, viscosity at 40°C: 300*10−6 m2/s
Grahic Jump Location
Forming parts (upper) and friction parts (lower) influencing the drawing force 21
Grahic Jump Location
Comparison of the experimental and theoretical drawing force with and without ultrasonic vibration 21. Copper Cu58, drawing velocity 5 mm/s, ultrasonic frequency 21,6 kHz, ultrasonic amplitude 13 μm, lubricant mineral oil without additives, viscosity at 40°C: 300*10−6 m2/s,φg=0,2, μ=0,07, diameter of the mandrel 20,7 mm, workpiece 25×2 mm, drawing angle 2α=16 deg.
Grahic Jump Location
Typical data plots. A: friction force without ultrasonic vibration with constant drawing velocity. B: friction force with ultrasonic vibration, with constant drawing velocity, quantity of lubricant 1,0g/mm2 , lubricant mineral oil, workpiece AK-Steel, die 1.2379.
Grahic Jump Location
Friction force reduction versus drawing velocity and normal load at three different ultrasonic amplitudes, quantity of lubricant 1,0 g/mm2 , lubricant mineral oil, workpiece AK-Steel, die 1.2379

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In