Averaging Models for Heterogeneous Viscoplastic and Elastic Viscoplastic Materials

[+] Author and Article Information
Alain Molinari

Laboratoire de Physique et Mécanique des Matériaux, ISGMP, Université de Metz, Ecole Nationale d’Ingénieurs, Ile du Saulcy, 57045 Metz-cedex, France

J. Eng. Mater. Technol 124(1), 62-70 (Jun 18, 2001) (9 pages) doi:10.1115/1.1421052 History: Received March 30, 2001; Revised June 18, 2001
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Eshelby,  J. D., 1957, “The determination of the elastic field of an ellipsoidal inclusion, and related problems,” Proc. R. Soc. London, Ser. A, 241, p. 376.
Molinari,  A., and Toth,  L. S., 1994, “Tuning a self-consistent viscoplastic model by finite element results I: Modelling,” Acta Metall. Mater., 42, pp. 2453–2458.
Gilormini,  P., 1995, C. R. Acad. Sci. Paris IIb, 320, p. 115.
Molinari,  A., Ahzi,  S., and Kouddane,  R., 1997, “On the self-consistent modeling of elastic-plastic behavior of polycrystals,” Mech. Mater., 26, pp. 43–62.
Hutchinson,  J. W., 1976, “Bounds and self-consistent estimate for creep of polycrystalline materials,” Proc. R. Soc. London, Ser. A, 348, p. 101.
Hill,  R., 1965, “Continuum micro-mechanics of elastoplastic polycrystals,” J. Mech. Phys. Solids, 13, p. 89.
Budianski, B., and Wu, 1962, “Theoretical prediction of plastic strains of polycrystals,” Proc. of the 4th U.S. National Congress of Applied Mechanics, ASME, p. 1175.
Berveiller,  M., and Zaoui,  A., 1979, “An extension of the self-consistent scheme to plastically-flowing polycrystals,” J. Mech. Phys. Solids, 26, pp. 325–344.
Ponte Castaneda,  P., 1992, J. Mech. Phys. Solids, 40, p. 1757.
Ponte-Castaneda,  P., and Suquet,  P., 1998, Adv. Appl. Mech., 34, p. 171.
Molinari,  A., Canova,  G. R., and Ahzi,  S., 1987, “A self-consistent approach of the large deformation polycrystal viscoplasticity,” Acta Metall., 35, pp. 2983–2994.
Canova,  G. R., Wenk,  H. R., and Molinari,  A., 1992, “Deformation Modelling of Multiphase Polycrystals: case of a quartz-mica Aggregate,” Acta Metall., 40, pp. 1519–1530.
Lebensohn,  R. A., and Tomé,  C. N., 1993, “A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys,” Acta Metall. Mater., 41, pp. 2611–2624.
Molinari, A., 1997, “Self consistent modelling of plastic and viscoplastic polycrystalline materials,” CISM Lecture Notes, C. Teodosiu, ed., Springer-Verlag, pp. 173–246.
Molinari,  A., 1999, “Extensions of the self-consistent tangent model,” Model. Simul. Mater. Sci. Engin., 7, pp. 683–697.
Masson,  R., and Zaoui,  A., 1999, “Self-consistent estimates for the rate-dependent elastoplastic behavior of polycrystalline materials,” J. Mech. Phys. Solids, 47, pp. 1543–1568.
Abdul-Latif,  A., Dingli,  J. Ph., and Saanouni,  K., 1998, “Modeling of complex cyclic inelasticity in heterogeneous polycrystalline microstructure,” J. Mech. Mater., 30, pp. 287–305.
Suquet,  P., 1995, “Overall properties of nonlinear composites: a modified secant moduli theory and its link with Ponte-Castaneda’s nonlinear variational procedure,” C. R. Acad. Sci. Paris, 320, pp. 563–571.
Kouddane, R., Molinari, A., and Canova, G. R., 1993, “Self-consistent modelling of heterogeneous viscoelastic and elastoviscoplastic materials,” Large plastic deformations: fundamentals and applications to metal forming, C. Teodosiu, J. L. Raphanel and F. Sidoroff, eds., Balkema, Rotterdam, pp. 129–141.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In