Essmann,
U., 1969, “Elektronenmikroskopische Untersuchung der Versetzungsanordnung. Plastisch Verformten Kupfereinkristallen,” Acta Metall., 12, pp. 1468–1470.
Essmann,
U., and Mughrabi,
H., 1979, “Annihilation of Dislocations during Tensile and Cyclic Deformation of Limits of Dislocation Densities,” Philos. Mag. A, 40(6), pp. 731–756.
Kamat,
S. V., and Hirth,
J. P., 1990, “Dislocation injection in strained multilayer structures,” J. Appl. Phys., 67(11), p. 6844.
Rhee,
M., Hirth,
J. P., and Zbib,
H. M., 1994, “On the Bowed Out Tilt Wall Model of Flow Stress and Size Effects in Metal Matrix Composites,” Acta Metall. Mater., 31, pp. 1321–1324.
Lambros,
J., and Rosakis,
A. J., 1995, “Development of a Dynamic Decohesion Criterion for Subsonic Fracture of the Interface between Two Dissimilar Materials,” SM Report 95-3, Cal. Tech.
Canova, G. R., Brechet, Y., and Kubin, L. P., 1992, “3D Dislocation Simulation of Plastic Instabilities by Work? Softening in Alloys,” Modelling of Plastic Deformation and Its Engineering Applications, S. I. Anderson et al., eds., Riso National Laboratory, Roskilde, Denmark.
Kubin,
L. P., Canova,
G., Condat,
M., Devincre,
B., Pontikis,
V., and Brechet,
Y., 1992, “Dislocation Microstructures in Two Dimensions: I. Relaxed Structures, Modelling Simulation,” Mater. Sci. Eng., 1, pp. 1–17.
Zbib,
H. M., Rhee,
M., and Hirth,
J. P., 1998, “On Plastic Deformation and the Dynamics of 3D Dislocations,” Int. J. Mech. Sci., 40, pp. 113–127.
Zbib,
H. M., Rhee,
M., Hirth,
J. P., and de La Rubia,
T. D., 2000, “A 3D Dislocation Simulation Model for Plastic Deformation and Instabilities in Single Crystals,” J. Mech. Behav. Mater., 11, p. 251–255.
Rhee,
M., Stolken,
J., Zbib,
H. M., Hirth,
J. P., and Diaz de la Rubia,
T., 2001, “Dislocation Dynamics Using Anisotropic Elasticity: Methodology and Analysis,” Mater. Sci. Eng., A A309-310, pp. 288–293.
Rhee,
M., Hirth,
J. P., and Zbib,
H. M., 1994, “On the Bowed Out Tilt Wall Model of Flow Stress and Size Effects in Metal Matrix Composites,” Scr. Metall. Mater., 31, pp. 1321–1324.
Hirth,
J. P., Rhee,
M., and Zbib,
H. M., 1996, “Modeling of Deformation by a 3D Simulation of Multipole, Curved Dislocations,” J. Computer-Aided Materials Design, 3, pp. 164–166.
Ghoniem,
N. M., and Sun,
L., 1999, “A Fast Sum Method for the Elastic Field of 3-D Dislocation Ensembles,” Phys. Rev. B, 60, pp. 128–140.
Kubin,
L. P., 1993, “Dislocation Patterning During Multiple Slip of FCC Crystals,” Phys. Status Solidi A, 135, pp. 433–443.
Zbib, H. M., Rhee, M., and Hirth, J. P., 1996, 3D Simulation of Curved Dislocations: Discretization and Long Range Interactions, Advances in Engineering Plasticity and its Applications, Japan, Pergamon, NY.
Rhee,
M., Zbib,
H. M., Hirth,
J. P., Huang,
H., and Rubia,
T. D. L., 1998, “Models for Long/Short Range Interactions in 3D Dislocation Simulation. Modeling & Simulations in Maters,” Sci. & Enger, 6, pp. 467–492.
Van der Giessen,
E., and Needleman,
A., 1995, “Discrete Dislocation Plasticity: A Simple Planar Model. Modelling Simul,” Mater. Sci. Eng., 3, pp. 689–735.
Zbib, H. M., and De La Rubia, T. D., 2002, “Multiscale Model of Plasticity,” Int. J. Plasticity, in press.
Zbib, H. M., Rhee, M., and Hirth, J. P., 1996, “3D Simulation of Curved Dislocations: Discretization and Long Range Interactions,” Advances in Engineering Plasticity and its Applications, T. Abe and T. Tsuta, eds., Pergamon, NY, pp. 15–20.
Diaz de la Rubia,
T., and Zbib,
H. M., 2000, “Flow Localization in Irradiated Materials: A Multiscale Modeling Approach,” Nature (London), 406, pp. 871–874.
Zbib,
H. M., de La Rubia,
T. D., Rhee,
R., and Hirth,
J. P., 2000, “3D Dislocation Dynamics: Stress-Strain behavior and Hardening Mechanisms in FCC and BCC Metals,” J. Nucl. Mater., 276, pp. 154–165.
Hirth,
J. P., Zbib,
H. M., and Lothe,
J., 1998, “Forces on High Velocity Dislocations,” Mater. Sci. Eng., 6, pp. 165–169.
Hirth, J. P., and Lothe, J., 1982, Theory of Dislocations, 2nd ed. New York, Wiley, p. 857.
Khraishi,
T. A., Zbib,
H. M., Hirth,
J. P., and Khaleel,
M., 2000, “Analytical Solution for The Stress-Displacement Field of Glide Dislocation Loop,” Int. J. Eng. Sci., 38, pp. 251–266.
Scattergood,
R. O., and Bacon,
D. J., 1975, “The Orwan Mechanism in Ansiotropic Crystal,” Philos. Mag., 31, pp. 179–198.
Gavazza,
S. D., and Barnett,
D. M., 1976, “The Self-Force on a Planar Dislocation Loop in an Anisotropic Linear-Elastic Medium,” J. Mech. Phys. Solids, 24, pp. 171–185.
Bulatov, V. V., Rhee, M., and Cai, W., 2000, “Periodic Boundary Conditions for Dislocation Dynamics Simulations in Three Dimensions,” Mat. Res. Soc. Symp., Vol. 653, eds. L. P. Kubin, J. L. Bassani, K. Cho, H. Gao, R. L. B. Selinger.
Demir,
I., Zbib,
H. M., and Khaleel,
M., 2001, “On Crack Propagation in the Case of Multiple Cracks, Inclusions and Voids,” Theor. Appl. Fract. Mech., in press.