Transformation Textures in Unstable Austenitic Steel

[+] Author and Article Information
R. Kubler, M. Berveiller, M. Cherkaoui, K. Inal

Laboratoine de Physique er Mécanique des Matériaux CNRS-ENSAM 4, rue Augustin Fresnel Technopo⁁le 57078 Metz Cedex 3, France e-mail: regis.kubler@metz.ensam.fr

J. Eng. Mater. Technol 125(1), 12-17 (Dec 31, 2002) (6 pages) doi:10.1115/1.1525249 History: Received October 10, 2001; Revised April 23, 2002; Online December 31, 2002
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.


Wechsler,  M. S., Lieberman,  D. S., and Read,  T. A., 1953, “On the Theory of the Formation of Martensite,” AIME Trans. J. Metals, 197 , pp. 1503–1515.
Sabar,  H., Buisson,  M., and Berveiller,  M., 1991, “The Inhomogeneous and Plastic Inclusion Problem With Moving Boundary,” Int. J. Plast., 7, p. 759.
Bunge,  H. J., 1968, Phys. Status Solidi, 26, pp. 167–172.
Cherkaoui,  M., Berveiller,  M., and Lemoine,  X., 2000, “Couplings Between Plasticity and Martensitic Phase Transformation: Overall Behavior of Polycrystalline TRIP Steels,” Int. J. Plast., 16, p. 1215.
Kurdjumov, G., and Sachs, G., 1930, Z. Physik., 64 , p. 325.
Nishiyama,  Z., 1934, Sci. Rep. Tohoku Univ., 23, p. 637.
Greninger,  B. A., and Troaino,  A. R., 1940, Trans. AIME, 40, p. 307.
Liu,  W. P., and Bunge,  H. J., 1991, “Variant Selection in the Martensitic Transformation of a Fe-30 percent Ni Alloy With Cube Texture,” Mater. Lett., 10(7-8), pp. 336–343.
Sum,  M., Butron-Guillén,  M. P., Da Costa Viana,  C. S., and Jonas,  J. J., 1998, “Variant Selection During the γ-to-α’ Transformation of a Fe-30 percent Ni Alloy,” Mater. Sci. Forum, 273-275, pp. 157–162.
Wittridge,  N. J., and Jonas,  J. J., 2000, “The Austenite-to-Martensite Transformation in Fe-30 percent Ni After Deformation by Simple Shear,” Acta Mater., 48, pp. 2737–2749.
Greenwood,  G. W., and Johnson,  R. H., 1965, “The Deformation of Metals Under Small Stresses During Phase Transformation,” Proc. R. Soc. London, Ser. A, 283, p. 403.
Leblond,  J. B., Devaux,  J., and Devaux,  J. C., 1989, “Mathematical Modeling of Transformation Plasticity in Steels, I: Case of Ideal-Plastic Phases,” Int. J. Plast., 5, pp. 551–572.
Patel,  J. R., and Cohen,  M., 1953, “Criterion for the Action of Applied Stress in the Martensitic Transformation,” Acta Mater., 1, pp. 531–538.
Wittridge,  N. J., Jonas,  J. J., and Root,  J. H., 2001, “A Dislocation-Based Model for Variant Selection During the γ-to-α’ Transformation,” Metal. Mat. Trans.,32A, pp. 889–901.
Magee, C. L., 1966, “Transformation Kinetics, Microplasticity and Aging of Martensite in Fe-31 Ni,” Ph.D. thesis, Carnegie Institute of Technology, Pittsburgh, PA.
Berveiller, M., and Zaoui, A., 1975, “Méthodes self-consistentes en mécanique des solides hétérogènes,” in Comportement rhéologiques et structures des matériaux, C. Huet, A. Zaoui, eds., p. 175.
Lipinski,  P., and Berveiller,  M., 1989, “Elastoplasticity of Micro-Inhomogeneous Metals at Large Strains,” Int. J. Plast., 5, pp. 149–172.
Lipinski,  P., Berveiller,  M., Reubrez,  E., and Morreale,  J., 1995, “Transition Theories of Elastic-Plastic Deformation of Metallic Polycrystals,” Arch. Appl. Mech., 65, pp. 291–311.
Bargui, H., Sidhom, H., and Tourki, Z., 2000, “Martensite Induite: incidence sur le comportement en écrouissage et sur la limite de formage de l’acier inoxydable austénitique AISI 304,” Matériaux & Techniques, 11-12 , pp. 31–41.
Maeder, G., Ramon, Y., Thorel, G., and Barralis, J., 1975, “Dosage par radiocristallographie X de l’austénite résiduelle dans des aciers 16NCD13 cémentés,” Mémoires Scientifiques Revue Métallurgie, pp. 397–405.


Grahic Jump Location
Simulation compared to experimental data for the stress-strain behavior and the evolution of the martensite volume fraction during a tensile test of an AISI304 steel
Grahic Jump Location
True stress-strain curves of AISI304 steel at different temperatures under tension (solid lines). Martensite volume fraction evolution at −60C determined by X-ray diffraction (round plot) fitted with a Johnson-Mehl law (dashed line).
Grahic Jump Location
Simulated {220} pole figures of the austenite at different strains E during a tensile test at −60°C on a polycrystal initially austenitic and isotropic
Grahic Jump Location
Experimental {220} pole figures of the austenite at different strains E obtained by X-ray diffraction on a AISI304 steel during a tensile test at −60°C
Grahic Jump Location
Comparison of simulated {220} pole figures without (a) and with martensitic transformation (b) during a tensile test at −60°C for a strain of 18 percent



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In