0
TECHNICAL PAPERS

The Convergence of a DFT-Algorithm for Solution of Stress-Strain Problems in Composite Mechanics

[+] Author and Article Information
C. M. Brown

Department of Mechanical and Chemical Engineering, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, UK

W. Dreyer

Weierstraß Institut für Angewandte Analysis und Stochastik, Mohrenstraße 39, 10117 Berlin, Germany

W. H. Müller

Technische Universität Berlin, Fakultät V, Institut für Mechanik, Einsteinufer 5, 10587 Berlin, Germany

J. Eng. Mater. Technol 125(1), 27-37 (Dec 31, 2002) (11 pages) doi:10.1115/1.1526859 History: Received November 05, 2001; Revised March 07, 2002; Online December 31, 2002
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Hill,  R., 1963, “Elastic Properties of Reinforced Solids: Some Theoretical Principles,” J. Mech. Phys. Solids, 11, pp. 357–372.
Hashin,  Z., 1962, “The Elastic Moduli of Heterogeneous Materials,” ASME J. Appl. Mech., 29, pp. 143–150.
Hashin,  Z., 1964, “Theory of Mechanical Behavior of Heterogeneous Media,” Appl. Mech. Rev., 17(1), pp. 1–9.
Christensen, R. M., 1979, Mechanics of Composite Materials, Krieger Publishing Company, Melbourne, FL.
Lukassen,  D., Persson,  L.-E., and Wall,  P., 1995, “Some Engineering and Mathematical Aspects of the Homogenization Method,” Composites Eng., 5(5), pp. 519–531.
Christensen,  R. M., 1979, “Solutions for Effective Shear Properties in Three-Phase Sphere and Cylinder Models,” J. Mech. Phys. Solids, 27, pp. 315–330.
Holmbom,  A., Persson,  L.-E., and Svanstedt,  N., 1992, “A Homogenization Procedure for Computing Effective Moduli and Microstresses in Elastic Composite Materials,” Composites Eng., 2(4), pp. 249–259.
Michel,  J. C., Moulinec,  H., and Suquet,  P., 1999, “Effective Properties of Composite Materials with Periodic Microstructure: A Computational Approach,” Comput. Methods Appl. Mech. Eng., 192(1–4), pp. 109–143.
Aboudi,  J., Pindera,  M.-J., and Arnold,  S. M., 2001, “Linear Thermoelastic Higher-Order Theory for Periodic Multiphase Materials,” ASME J. Appl. Mech., 68(5), pp. 697–707.
Moulinec, H., and Suquet, P., 1995, “A FFT-based Numerical Method for Computing the Mechanical Properties of Composites from Images of their Microstructures,” IU-TAM Symposium on Microstructure-Property Interactions in Composite Materials, pp. 235–246.
Moulinec,  H., and Suquet,  P., 1998, “A Numerical Method for Computing the Overall Response of Nonlinear Composites with Complex Microstructure,” Comput. Methods Appl. Mech. Eng., 157(1–2), pp. 69–94.
Michel,  J. C., Moulinec,  H., and Suquet,  P., 1999, “Effective Properties of Composite Materials with Periodic Microstructure: A Computational Approach,” Comput. Methods Appl. Mech. Eng., 192(1–4), pp. 109–143.
Müller,  W. H., 1996, “Mathematical vs. Experimental Stress Analysis of Inhomogeneities in Solids,” J. Phys. IV, Colloque C1, Supplément au J. Phys. III 6 , pp. C1-139–C1-148.
Brown, C. M., and Müller, W. H., 2001, “On the Rapid Determination of Effective Properties of Composite Materials: Discrete Fourier Transforms Versus Finite Element Methods,” Comput. Mater. Sci., submitted.
Chen,  L.-Q., Wang,  Y., and Khachaturyan,  A. G., 1992, “Kinetics of Tweed and Twin Formation During an Ordering Transition in a Substitutional Solid Solution,” Philos. Mag. Lett., 65(1), pp. 15–23.
Dreyer,  W., and Müller,  W. H., 2000, “A Study of the Coarsening in Pb/Sn Solders,” Int. J. Solids Struct., 37(28), pp. 3841–3871.
Mura, T., 1987, Micromechanics of Defects in Solids, Second revised edition, Martinus Nijhoff Publishers, Dordrecht, The Netherlands.
Porter, D., and Stirling, D. S. G., 1990, Integral Equations: A Practical Treatment from Spectral Theory to Applications, Cambridge University Press, Cambridge.
Moiseiwitsch, B. L., 1977, Integral Equations, Longman Group Ltd., New York.
Bronstein, I. N., and Semendjajew, K. A., 1976, Taschenbuch der Mathematik, Verlag Harri Deutsch, 16. Auflage, Zürich, Frankfurt/Main, Thun.
Herrmann,  K. P., Müller,  W. H., and Neumann,  S., 1999, “Linear and Elastic-Plastic Fracture Mechanics Revisited by use of Fourier Transforms-Theory and Application,” Comput. Mater. Sci., 16, pp. 186–196.
Heuser, H. G., 1982, Functional Analysis, John Wiley and Sons, New York.
Kreyszig, E. 1978, Introductory Functional Analysis with Applications, John Wiley & Sons, New York.
Latella,  B. A., and Liu,  T., 2000, “Performance Characteristics of Porous Alumina in Ceramic Structures,” J. Aust. Ceram. Soc., 36 (2), pp. 13–21.

Figures

Grahic Jump Location
ε11 for (first row) E+/E=10,ν+=0.3,vf=0.2; (second row): E+/E=0.1,ν+=0.3,vf=0.2.
Grahic Jump Location
Some 2D kijkl’s for N=64,νaux=0.3
Grahic Jump Location
Diagonal element k1111 at higher discretizations N=128 and N=256 for νaux=0.3
Grahic Jump Location
The choice C͇aux=C͇+:q1(N) for three different volume fractions, vf=0.2, 0.4, 0.6 and ν+=0.3.
Grahic Jump Location
The choice C͇aux=C͇:q1(N) for vf=0.6 and ν+=0.3
Grahic Jump Location
The choice C͇aux=0.5(C͇++C͇):q1(N) for ν+=0.3
Grahic Jump Location
The choice C͇aux=C͇+:q1(N) for vf=0.2 and different Poisson’s ratios
Grahic Jump Location
The choice C͇aux=C͇+:q1 as a function of Poisson’s ratio for various volume fractions
Grahic Jump Location
Relative error, q1m/(1−q1), as a function of number of iterations, m, for various choices of Poisson’s ratios and vf=0.2
Grahic Jump Location
The choice C͇aux=C͇+:q1(m) in the case of a void for various volume fractions and different choices of Poisson’s ratio
Grahic Jump Location
RVE showing heterogeneities of different elastic stiffness than the surrounding matrix and external strains
Grahic Jump Location
Discretization of the RVE

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In