On the Analytical Solution of Pullout Phenomena in Textile Reinforced Concrete

[+] Author and Article Information
B. Zastrau

TU Dresden, Department of Civil Engineering, Chair of Mechanics, 01062 Dresden, Germanye-mail: Bernd.W.Zastrau@mailbox.tu-dresden.de

M. Richter, I. Lepenies

Institut for Mechanics and Applied Informatics, Technische Universität Dresden, Germany

J. Eng. Mater. Technol 125(1), 38-43 (Dec 31, 2002) (6 pages) doi:10.1115/1.1526125 History: Received November 28, 2001; Revised June 05, 2002; Online December 31, 2002
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.


Bakis,  C. E., Uppuluri,  V. S., Nanni,  A., and Boothby,  T. E., 1998, “Analysis of Bonding Mechanisms of Smooth and Lugged FRP Rods Embedded in Concrete,” Compos. Sci. Technol., 58(8), pp. 1307–1319.
Bentur, A., and Mindess, S., 1990, Fibre Reinforced Cementitious Composites, Elsevier Applied Science, London and New York.
Curbach, M., 2002, “Arbeits- und Ergebnisbericht zum Sonderforschungsbereich 528 ‘Textile Bewehrung zur bautechnischen Verstärkung und Instandsetzung’—Arbeits- und Ergebnisbericht für die Periode II/1999 bis I/2002,” Technische Universität Dresden.
Evans,  A. G., Zok,  F. W., and Davis,  J., 1991, “The Role of Interfaces in Fiber-Reinforced Brittle Matrix Composites,” Compos. Sci. Technol., 42, pp. 3–24.
Focacci,  F., Nanni,  A., and Bakis,  C., 2000, “Local Bond-Slip Relationship for FRP Reinforcement in Concrete,” Journal of Composites for Construction,4(1), pp. 24–31.
Guo,  J., and Cox,  J. V., 2000, “An Interface Model of the Mechanical Interaction between FRP Bars and Concrete,” J. Reinf. Plast. Compos., 19(1), pp. 15–33.
Hegger, J., 2001, “Textilbeton—1. Fachkolloquium der Sonderforschungsbereiche 528 und 532,” RWTH Aachen.
Hillerborg,  A., Modéer,  M., and Petersson,  P. E., 1976, “Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements,” Cem. Concr. Res., 6, pp. 773–782.
Kankam,  C., 1997, “Relationship of Bond Stress, Steels Stress and Slip in Reinforced Concrete,” Journal of Structural Engineering, 123, pp. 79–85.
Leung,  C., and Ybanez,  N., 1997, “Pullout of Inclined Flexible Fiber in Cementitious Composite,” J. Eng. Mech., 123, pp. 239–246.
Mazars,  J., Dube,  J. F., and Bournazel,  J. P., 1992, “Damage Models and Modelling Strategies for Concrete Structures Under Severe Loadings,” FramCoS I, Z. P. Bazant, ed., pp. 260–268.
Mazars,  J., and Pijaudier-Cabot,  G., 1996, “Bridges Between Damage and Fracture Mechanics,” Fracture Mechanics of Concrete Structures, III, pp. 1915–1920.
Mindess, S., and Shah, S. P., 1986, “Cement-Based Composites—Strain Rate Effects on Fracture,” Materials Research Society Symposium Proceedings, 64 , Pittsburgh, Pennsylvania.
Ohno, S., Hannant, D. J., and Keer, J. G., 1988, “Micromechanics of Stress Transfer Between Fibre and Matrix in Polypropylene Fibre Cement Composites,” Advancing with Composites, International Conference on Composite Materials, Milan, pp. 167–174.
Ohno,  S., and Hannant,  D. J., 1994, “Modelling the Stress-Strain Response of Continuous Fiber Reinforced Cement Composites,” ACI Mater. J., 91(3), pp. 306–312.
Reinhardt, H. W., and Balazs, G. L., 1995, “Steel-Concrete Interfaces—Experimental Aspects,” Mechanics of Geomaterial Interfaces, ed., A. P. S. Selvadurai, pp. 225–279.
Shah, S. P., Li, Z., and Shao, Y., 1995, “Modelling of Constitutive Relationship of Steel Fiber-Concrete Interface,” Mechanics of Geomaterial Interfaces, ed., A. P. S. Selvadurai, pp. 227–254.
Soh,  C. K., Chiew,  S. P., and Dong,  Y. X., 1999, “Damage Model for Concrete-Steel Interface,” J. Eng. Mech., 125, pp. 979–983.
Zastrau, B. W., Richter, M., and Lepenies, I., 2001, “Zum Verbundverhalten textiler Bewehrungen in einer Feinbetonmatrix,” Mitteilungen des Institutes für Baumechanik und Bauinformatik und des Fakultätsrechenzentrums, Nov./2001, Technische Universität Dresden, pp. 137–154.


Grahic Jump Location
Pullout force-displacement curve of a long fiber from a matrix using a triple linear approximation
Grahic Jump Location
Experimentally and analytically determined pullout-distributions for a roving (155 tex) based on the shear stress-slip relation in Fig. 10
Grahic Jump Location
Experimentally and analytically determined pullout-distributions for a single filament: (a) shear stress-slip relation and (b) pullout force-displacement curve.
Grahic Jump Location
Sample of a textile reinforcement material
Grahic Jump Location
Compilation of common modes of partial failure
Grahic Jump Location
Force-displacement curves of a tensile specimen with different volume fractions of fibers
Grahic Jump Location
Two typical types of cross sections of rovings with emphasized boundaries
Grahic Jump Location
Assumed distribution of material properties and subdivision of the pullout specimen
Grahic Jump Location
Mechanical model for pullout
Grahic Jump Location
Common shear stress-slip relations
Grahic Jump Location
Approach based on triple linear shear stress-slip relation: (a) mechanical model, (b) shear stress-slip relation, and (c) shear stress distribution



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In