Long-Term Reliability of Brittle Materials: The Issue of Crack Arrest

[+] Author and Article Information
Yann Charles, François Hild

LMT-Cachan, ENS de Cachan/UMR CNRS/Université Paris 6, 61 avenue du Président Wilson, F-94235 Cachan Cedex, France

Stéphane Roux

Laboratoire “Surface du Verre et Interfaces”, UMR CNRS/Saint-Gobain, 39 quai L. Lefranc, F-93303 Aubervilliers Cedex, France

J. Eng. Mater. Technol 125(3), 333-340 (Jul 10, 2003) (8 pages) doi:10.1115/1.1580854 History: Received March 12, 2002; Revised January 08, 2003; Online July 10, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.


Freudenthal, A. M., 1968, “Statistical Approach to Brittle Fracture,” Fracture, H. Liebowitz, ed., 2 , Academic Press, New York, pp. 591–619.
Weibull,  W., 1939, “A Statistical Theory of the Strength of Materials,” Roy. Swed. Inst. Eng. Res., 151 .
Weibull,  W., 1951, “A Statistical Distribution Function of Wide Applicability,” ASME J. Appl. Mech., 18(3), pp. 293–297.
Jayatilaka,  A. , and de  S., and Trustrum,  K., 1977, “Statistical Approach to Brittle Fracture,” J. Mater. Sci., 12, pp. 1426–1430.
Munz, D., and Fett, T., 1999, “Scatter of Mechanical Properties,” in Ceramics, Springer, Berlin, Germany, pp. 137–158.
Batdorf,  S. B., and Heinisch,  H. L., 1978, “Weakest Link Theory Reformulated for Arbitrary Fracture Criterion,” J. Am. Ceram. Soc., 61(7–8), pp. 355–358.
Evans,  A. G., 1978, “A General Approach for the Statistical Analysis of Multiaxial Fracture,” J. Am. Ceram. Soc., 61(7–8), pp. 302–308.
Davies,  D. G. S., 1973, “The Statistical Approach to Engineering Design in Ceramics,” Proc. Br. Ceram. Soc., 22, pp. 429–452.
Aveston, J., Cooper, G. A., and Kelly, A., 1971, “Single and Multiple Fracture,” Proc. National Physical Laboratory: Properties of Fiber Composites, IPC Science and Technology Press, Surrey, UK, pp. 15–26.
Riou,  P., Denoual,  C., and Cottenot,  C. E., 1998, “Visualization of the Damage Evolution in Impacted Silicon Carbide Ceramics,” Int. J. Impact Eng., 21(4), pp. 225–235.
Denoual,  C., and Hild,  F., 2000, “A Damage Model for the Dynamic Fragmentation of Brittle Solids,” Comp. Meth. Appl. Mech. Eng., 183, pp. 247–258. Perspective,” Continuum Damage Mechanics of Materials and Structures, O. Allix, and F. Hild, eds., Elsevier, Amsterdam, the Netherlands, in press.
Wiederhorn,  S. M., 1967, “Influence of Water Vapor on Crack Propagation in Soda-Lime-Silicate Glass,” J. Am. Ceram. Soc., 50(8), pp. 407–417.
Wiederhorn,  S. M., and Bolz,  L. H., 1970, “Stress Corrosion and Static Fatigue of Glass,” J. Am. Ceram. Soc., 56(4), pp. 192–197.
Evans,  A. G., 1972, “A Method for Evaluating the Time-Dependent Failure Characteristics of Brittle Materials and Its Application to Polycrystalline Alumina,” J. Mater. Sci., 7, pp. 1137–1146.
Evans,  A. G., and Wiederhorn,  S. M., 1974, “Crack Propagation and Failure Prediction in Silicon Nitride at Elevated Temperature,” J. Mater. Sci., 9, pp. 270–278.
Charles,  Y., and Hild,  F., 2002, “Crack Arrest in Ceramic/Steel Assemblies,” Int. J. Fract., 15(3), pp. 251–272.
Davidge,  R. W., McLaren,  J. R., and Tappin,  G., 1973, “Strength-Probability-Time (SPT) Relationship in Ceramics,” J. Mater. Sci., 8, pp. 1699–1705.
Evans,  A. G., and Wiederhorn,  S. M., 1974, “Proof Testing of Ceramic Materials-An Analytical Basis for Failure Prediction,” Int. J. Fract., 10, pp. 379–392.
Evans,  A. G., 1980, “Fatigue in Ceramics,” Int. J. Fract., 16(5), pp. 485–498.
Brinkman, C. R., and Duffy, S. F., eds., 1994, “Life Prediction Methodologies and Data for Ceramic Materials,” ASTM STP 1211.
Bower,  A. F., and Ortiz,  M., 1991, “A Three-Dimensional Analysis of Crack Trapping and Bridging by Tough Particles,” J. Mech. Phys. Solids, 28(5), pp. 815–858.
Bower,  A. F., and Ortiz,  M., 1993, “The Influence of Grain Size on the Toughness of Monolithic Ceramics,” ASME J. Eng. Mat. Technol., 115, pp. 228–236.
Curtin,  W. A., 1997, “Toughening in Disordered Brittle Materials,” Phys. Rev. B, 55, pp. 11270–11276.
Curtin,  W. A., 1998, “Stochastic Damage Evolution and Failure in Fiber-Reinforced Composites,” Adv. Appl. Mech., 36, pp. 164.
Schmittbuhl,  J., Roux,  S., Vilotte,  J.-P., and Måløy,  K. J., 1995, “Pinning of Interfacial Crack: Effect of Non-local Interactions,” Phys. Rev. Lett., 74, pp. 1787–1790.
Ramanathan,  S., and Fisher,  D. S., 1998, “Onset of Propagation of Planar Cracks in Heterogeneous Media,” Phys. Rev. B, 58, pp. 6026–6046.
Skoe, R., Vandembroucq, D., and Roux, S., 2003, “Front Propagation in Random Media: From Extremal to Activated Dynamics,” Int. J. Modern Physics C, in press.
Chudnowsky,  A., and Kunin,  B., 1987, “A Probabilistic Model of Brittle Crack Formation,” J. Appl. Phys., 62, p. 4124.
Beyerlein,  I. J., and Phoenix,  S. L., 1997, “Statistics of Fracture for an Elastic Notched Composite Lamina Containing Weibull Fibers—Part I. Features From Monte-Carlo Simulation,” Eng. Fract. Mech., 57, pp. 241–265.
Beyerlein,  I. J., and Phoenix,  S. L., 1997, “Statistics of Fracture for an Elastic Notched Composite Lamina Containing Weibull Fibers—Part II. Probability Models of Crack Growth,” Eng. Fract. Mech., 57, pp. 267–299.
Landis,  C. M., Beyerlein,  I. J., and McMeeking,  R. M., 2000, “Micromechanical Simulation of the Failure of Fiber Reinforced Composites,” J. Mech. Phys. Solids, 48(3), pp. 621–648.
Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., 1976, Introduction to Ceramics, John Wiley and Sons, Inc., New York.
Lévy,  P., 1924, “Théorie des erreurs. La loi de Gauss et les lois exceptionnelles,” Bull. Mater. Sci., 52, pp. 49–85.
Lévy, P., 1954, Théorie de l’addition des variables aléatoires, Gauthier-Villars, Paris, France.
Griffith,  A. A., 1921, “The Phenomenon of Rupture and Flow in Solids,” Proc. R. Soc. London, Ser. A, 221, pp. 163–197.
Jeulin,  D., 1994, “Fracture Statistics Models and Crack Propagation in Random Media,” Appl. Mech. Rev., 47(1), pp. 141–150.
Wiederhorn, S. M., 1974, “Subcritical Crack Growth in Ceramics,” Fracture Mechanics of Ceramics, R. C. Brandt, D. P. H. Hasselman, and F. F. Lange, eds., Plenum Press, New York, pp. 613–646.
Hillig, W. B., and Charles, R. J., 1965, High Strength Materials, V. F. Zackey, ed., John Wiley and Sons, Inc., New York, pp. 682–705.
Wan,  K.-T., Lathabai,  S., and Lawn,  B. R., 1990, “Crack Velocity Functions and Thresholds in Brittle Materials,” J. Eur. Ceram. Soc., 6, pp. 259–268.
Lindeberg,  J. W., 1922, “Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung,” Math. Z., 15, pp. 211–225.
Feller, W., 1966, An Introduction to Probability Theory and its Applications, John Wiley and Sons, Inc., New York.
Fett, T., and Munz, D., 1994, “Lifetime Predictions of Ceramic Materials Under Constant and Cyclic Load,” Life Prediction Methodologies and Data for Ceramic Materials, C. R. Brinkman, and S. F. Duffy, eds., ASTM STP 1211, pp. 161–174.
Bree,  I., 1967, “Elastic-Plastic Behaviour of Thin Tubes Subjected to Internal Pressure and Intermittent High Heat Fluxes with Applications to Fast-Nuclear-Reactor Fuel Elements,” J. Strain Anal., 2, pp. 226–238.
Megahed,  M. M., Morrison,  C. J., and Ponter,  A. R. S., 1982, “A Theoretical and Experimental Investigation of Material Rachetting Rates in a Bree Beam Element,” Int. J. Mech. Sci., 25, pp. 917–933.
Hild,  F., and Roux,  S., 1991, “Fatigue Initiation in Heterogeneous Brittle Materials,” Mech. Res. Comm., 18, pp. 409–414.
Oh,  H. L., and Finnie,  I., 1970, “On the Location of Fracture in Brittle Solids-I Due to Static Loading,” Int. J. Fract. Mech., 6, pp. 287–300.
Hild,  F., 1994, “On the Average Pull-Out Length of Fiber-Reinforced Composites,” C. R. Acad. Sci. Paris, 319 (Série II), pp. 1123–1128.
Tada, H., Paris, P. C., and Irwin, G. R., 1985, The Stress Analysis of Cracks Handbook, ASME, New York.
Hutchinson, J. W., and Suo, Z., 1992, “Mixed Mode Cracking in Layered Materials,” Advances in Applied Mechanics, J. W. Hutchinson and T. Y. Wu, eds., Academic Press, Inc., New York, USA, pp. 63–191.
Suo,  Z., 1990, “Failure of Brittle Adhesive Joints,” Appl. Mech. Rev., 43, pp. S276–S279.
Paris,  P. C., Gomez,  M. P., and Anderson,  W. P., 1961, “A Critical Analysis of Crack Propagation Laws,” The Trend in Engineering,13, pp. 9–14.
Elber,  W., 1970, “Fatigue Crack Closure Under Cyclic Tension,” Eng. Fract. Mech., 2, pp. 37–45.
Elber, W., 1971, “The Significance of Fatigue Crack Closure,” Damage Tolerance in Aircraft Structures, ASTM STP 486, pp. 230–242.
Pellas, J., Baudin, G., and Robert, M., 1977, “Mesure et calcul du seuil de fissuration après surcharge,” Recherche Aérospatiale, 3 , pp. 191–201.


Grahic Jump Location
Propagation path from an initial length a to a final length b intersecting sites of spacing 1/λ and random toughness
Grahic Jump Location
Time-correction function Φ versus dimensionless time λCT for different values of the sensitivity exponent m when μ=0.6
Grahic Jump Location
Identification of the crack propagation parameters μ, C,m from conventional Evans-Wiederhorn parameters A,p for a 99.6% alumina ceramic for a conventional value of V0
Grahic Jump Location
Thin-walled tube of average radius R and thickness h. Frame of a volume element of the tube and distribution of stresses σzz and σφφ through the thickness.
Grahic Jump Location
Longitudinal crack initiated on the outer surface of the tube. Initial semicircular crack and channelling crack experiencing a steady-state propagation.
Grahic Jump Location
Crack extension probability versus dimensionless extension length for different values of the cumulative probability H[KSSΦ(T)]. Three different regimes can be observed.




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In