Fracture Toughness of Highly Ordered Carbon Nanotube/Alumina Nanocomposites

[+] Author and Article Information
Z. Xia, W. A. Curtin, B. W. Sheldon

Division of Engineering, Brown University, Providence, Rhode Island, 02912

J. Eng. Mater. Technol 126(3), 238-244 (Jun 29, 2004) (7 pages) doi:10.1115/1.1751179 History: Received July 30, 2003; Revised March 01, 2004; Online June 29, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.


Yu,  M. F., Lourie,  O., Dyer,  M. J., Molor,  K., Kelly,  T. F., and Ruoff,  R. S., 2000, “Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Loads,” Science, 287, pp. 637–640.
Wagner,  H. D., Lourie,  O., Feldman,  Y., and Tenne,  R., 1998, “Stress-Induced Fragmentation of Multiwall Carbon Nanotubes in a Polymer Matrix,” Appl. Phys. Lett., 72, pp. 188–190.
Yakobson,  B. I., and Avouris,  P., 2001, “Mechanical Properties of Carbon Nanotubes,” Top. Appl. Phys., 80, pp. 287–327.
Nardelli,  M. B., Yakobson,  B. I., and Bernholc,  J., 1998, “Brittle and Ductile Behavior in Carbon Nanotubes,” Phys. Rev. Lett., 81, pp. 4656–4659.
Belytschko,  T., Xiao,  S. P., Schatz,  G. C., and Ruoff,  R. S., 2002, “Atomistic Simulation of Nanotube Fracture,” Phys. Rev. B, 65, 235430.
Laurent,  Ch., Peigney,  A., Durnortier,  O., and Rousset,  A., 1998, “Carbon Nanotubes-Fe-Alumina Nanocomposites: Part II—Microstructure and Mechanical Properties the Hot-Pressed Composites,” Euro. Cerm. Soc.,18, pp. 2005–2013.
Ma,  R. Z., Wu,  J., Wei,  B. Q., Liang,  J., and Wu,  D. H., 1998, “Processing and Properties of Carbon Nanotubes-Nano-SiC Ceramics,” Mater. Sci., 33, pp. 524–546.
Zhan,  G.-D., Kuntz,  J., Wan,  J., and Mukherjee,  A. K., 2003, “Single-Wall Carbon Nanotubes as Attractive Toughening Agents in Alumina-Based Nanocomposites,” Nat. Mater., 2, pp. 38–42.
Lourie,  O., and Wagner,  H. D., 1999, “Evidence of Stress Transfer and Formation of Fracture Clusters in Carbon Nanotube-Based Composites,” Compos. Sci. Technol., 59, pp. 975–977.
Andrews,  R., Jacques,  D., Rao,  A. M., Rantell,  T., and Derbyshire,  F., 1999, “Continuous Production of Aligned Carbon Nanotubes: A Step Closer to Commercial Realization,” Appl. Phys. Lett., 76, pp. 2868–2870.
Qian,  D., Dickey,  E. C., Andrews,  R., and Rantell,  T., 2000, “Load Transfer and Deformation Mechanisms in Carbon Nanotube-Polystyrene Composites,” Appl. Phys. Lett., 76, pp. 2868–2870.
Allaoui,  A., Bai,  S., Cheng,  H. M., and Bai,  J. B., 2002, “Mechanical and Electrical Properties of a MWNT/Epoxy Composite,” Compos. Sci. Technol., 62, pp. 993–1998.
Peigney,  A., Flahaut,  E., Laurent,  Ch., Chastel,  F., and Rousset,  A., 2002, “Aligned Carbon Nanotubes in Ceramic-Matrix Nanocomposites Prepared by High-Temperature Extrusion,” Chem. Phys. Lett., 352, pp. 20–25.
Xia,  Z., Riester,  L., Curtin,  W. A., Li,  H., Sheldon,  B. W., Liang,  J., Chang,  B., and Xu,  J., 2004, “Direct Observation of Toughening Mechanisms in Carbon-Nanotube Ceramic Matrix Composites,” Acta Mater. 52, pp. 931–944.
Curtin, W. A., 2000, Encyclopedia of Composites, A. Kelly and C. Zweben, eds., Elsevier, Holland.
Pharr,  G. M., 1998, “Measurement of Mechanical Properties by Ultra-Low Load Indentation,” Mater. Sci. Eng., A253, pp. 151–159.
Aveston J., Cooper G. A., and Kelly, A., 1971, The Properties of Composites, Conference Proceedings, IPI Science and Technology Press, Teddington, UK, pp. 15–26.
Budiansky,  B., Hutchinson,  J. W., and Evans,  A. G., 1986, “Matrix Fracture of Fiber-Reinforced Ceramics,” J. Mech. Phys. Solids, 34, pp. 167–189.
Marshall,  D. B., Cox,  B. N., and Evans,  A. G., 1985, “The Mechanics of Matrix Cracking in Brittle-Matrix Fiber Composites,” Acta Metall., 33, pp. 2013–2021.
McCartney,  L. N., 1987, “Mechanics of Matrix Cracking in Brittle-Matrix Fiber-Reinforced Composites,” Proc. R. Soc. London, Ser. A, 409, pp. 329–350.
Majumdar, B. S., Newaz, G. M., and Rosefield, A. R., 1989, Advance in Fracture Research, Proc. 7th Intern. Conf. Fract., Pergamon Press, pp. 2805–2814.
Danchaivijit,  S., and Shetty,  D. K., 1993, “Matrix Cracking in Ceramic-Matrix Composites,” J. Am. Ceram. Soc., 76, pp. 2497–2504.
Marshall,  D. B., and Evans,  A. G., 1988, “The Influence of Residual Stress on the Toughness of Reinforced Composites,” Mater. Forum, 11, pp. 304–312.
Swanson,  P. L., Fairbanks,  C. J., Lawn,  B. R., and Mai,  Y. W., 1987, “Crack-Interface Grain Bridging as a Fracture Resistance Mechanism in Ceramics: II—Theoretical Fracture Mechanics Model,” J. Am. Ceram. Soc., 70, p. 279.
Bennison,  S. T., and Lawn,  B. R., 1989, “Role of Interfacial Grain-Bridging Sliding Fraction in the Crack-Resistance and Strength Properties of Nontransforming Ceramics,” Acta Metall., 37, pp. 2659–2671.
Cook,  R. F., 1990, “Segregation Effects in the Fracture of Brittle Materials-CA-Al2O3,” Acta Metall., 38, pp. 1083–1100.
Vekinis,  G., Ashby,  M. F., and Beaumont,  P. W. R., 1990, “R-Curve Behavior of Al2O3 Ceramic,” Acta Metall., 38, pp. 1151–1162.
Li,  J., Papadopoulos,  C., and Xu,  J. M., 1999, “Highly-Ordered Carbon Nanotube Arrays for Electronics Applications,” Appl. Phys. Lett., 75, pp. 367–369.
Paris, P. C., and Sih, G. C., 1965, “Stress Analysis of Cracks in Fracture Toughness Testing and Its Applications,” American Society of Testing and Materials, Philadelphia, PA, ASTM STP 381, pp. 30–83.
Xia,  Z., Curtin,  W. A., and Sheldon,  B. W., 2004, “A New Method to Evaluate the Fracture Toughness of Thin Films,” Acta Mater., in press.
Xia,  Z., and Curtin,  W. A., 2001, “Life Prediction of Titanium MMCs Under Low-Cycle Fatigue,” Acta Mater., 49, pp. 1633–1646.
Xu,  X. P., and Needleman,  A., 1993, “Void Nucleation by Inclusion Debounding in a Crystal Matrix,” Mod. Sim. Matl. Sci. Eng.,1, pp. 111–132.
Maniwa,  Y., Fujiwara,  R., Kira,  H., Tou,  H., Kataura,  H., Suzuki,  S., Achiba,  Y., Nishibori,  E., Takata,  M., Sakata,  M., Fujiwara,  A., and Suematsu,  H., 2001, “Thermal Expansion of Single-Walled Carbon Nanotube (SWNT) Bundles: X-Ray Diffraction Studies,” Phys. Rev. B, 64 , pp.
O’Day,  M. P., and Curtin,  W. A., 2002, “Failure of Crossply Ceramic-Matrix Composites,” J. Am. Ceram. Soc., 85, pp. 241–102–1–3.


Grahic Jump Location
SEM photographs of (a) porous alumina matrix only and (b) multi-wall CNT/Al2O3 nanocomposite (90-μm-thick sample)
Grahic Jump Location
TEM Photographs of CNT in the 90 μm thick sample
Grahic Jump Location
(a) Side indentation crack pattern on 90 μm thick sample at a load of 400 mN; and (b) the magnification of circled area in (a) showing bridging CNTs close to the indent
Grahic Jump Location
(a) Side indentation crack pattern on 90 μm thick sample at a load of 650 mN; (b) the magnification of circled area in (a) showing bridging CNTs at a distance away from the indent; and (c) magnification of the completely cracked area, showing broken nanotubes, nanotube pullout, and subsurface nanotube bridging
Grahic Jump Location
Geometry of the finite element model with cohesive zone region
Grahic Jump Location
Matrix and total tractions versus crack half-opening, for 30% CNT in Al2O3 matrix, with a matrix residual stress σmr=300 MPa, matrix fracture toughness of 0.4 MPa-m1/2 , and interfacial sliding stress τ = 40 MPa
Grahic Jump Location
Stress distribution as predicted by the cohesive zone model for the largest indent crack at an applied load of 580 mN
Grahic Jump Location
Predicted crack front with and without residual stress at a load of 580 mN
Grahic Jump Location
Predicted bridging fracture toughness versus matrix residual tensile stress (c=30.3 μm,P=650 mN,Km=0.4 MPa-m1/2); for reference, the contribution of the residual stress to the stress intensity of a penny crack is shown
Grahic Jump Location
CNT bridging traction versus half-crack opening, for the three cases shown in Table 4. X denoting the maximum opening point and associated CNT tensile stress. The shadowed area corresponds to the bridging fracture energy (Eq. 3) to determine composite fracture toughness. The dotted line shows a possible unifying bridging law that accounts for the statistical nanotube strength 34.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In