Tribological Behavior of Aligned Single-Walled Carbon Nanotubes

[+] Author and Article Information
Xinling Ma, Hongtao Wang, Wei Yang

Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China

J. Eng. Mater. Technol 126(3), 258-264 (Jun 29, 2004) (7 pages) doi:10.1115/1.1752924 History: Received August 20, 2003; Revised March 01, 2004; Online June 29, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.


Bowden, F. P., and Tabor, D., 1950, The Friction and Lubrication of Solids, Oxford, Claredon.
Iijima,  S., and Ichlhashi,  T., 1993, “Single-Shell Carbon Nanotubes of 1 nm Diameter,” Nature (London), 363, pp. 603–605.
Bethune,  D. S., Kiang,  C. H., Devries,  M. S., Gorman,  G., Savoy,  R., Vazquez,  J., and Beyers,  R., 1993, “Cobalt-Catalysed Growth of Carbon Nanotubes With Single-Atomic-Layer Walls,” Nature (London), 363, pp. 605–607.
Treacy,  M. M. J., Ebbesen,  T. W., and Gibson,  J. M., 1996, “Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes,” Nature (London), 381, pp. 678–680.
Wong,  E. W., Sheehan,  P. E., and Lieber,  C. M., 1997, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes,” Science, 277, pp. 1971–1975.
Goze,  C., Vaccarini,  L., Henrard,  L., Bernier,  P., Hernandez,  E., and Rubio,  A., 1999, “Elastic and Mechanical Properties of Carbon Nanotubes,” Synth. Met., 103, pp. 2500–2501.
Yakobson,  B. I., Brabec,  C. J., and Bernholc,  J., 1996, “Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response,” Phys. Rev. Lett., 76, pp. 2511–2514.
Yakobson,  B. I., Campbell,  M. P., Brabec,  C. J., and Bernholc,  J., 1997, “High Strain Rate Fracture and C-Chain Unraveling in Carbon Nanotubes,” Comput. Mater. Sci., 8, pp. 341–348.
Yakobson,  B. I., 1998, “Mechanical Relaxation and “Intramolecular Plasticity” in Carbon Nanotubes,” Appl. Phys. Lett., 72, pp. 918–920.
Yu,  M.-F., Lourie,  O., Dyer,  M. J., Moloni,  K., Kelly,  T. F., and Ruoff,  R. S., 2000, “Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load,” Science, 287, pp. 637–640.
Avouris,  Ph., Hertel,  T., Martel,  R., Schmidt,  T., Shea,  H. R., and Walkup,  R. E., 1999, “Carbon Nanotubes: Nanomechanics, Manipulation, and Electron Devices,” Appl. Surf. Sci., 141, pp. 201–209.
Yakobson, B. I., and Avouris, Ph., 2001, “Mechanical Properties of Carbon Nanotubes,” Carbon Nanotubes, Series: Topics in Applied Physics, M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, eds. 80 , pp. 287–329.
Qian,  D., Wagner,  G. J., Liu,  W. K., Yu,  M. F., and Ruoff,  R. S., 2002, “Mechanics of Carbon Nanotubes,” Appl. Mech. Rev., 55, pp. 495–533.
Huang, Y. Y., and Wang, Z. L., 2003 Mechanics of Nanotubes, Comprehensive Structural Integrity, 8 , “Interfacial and Nanoscale Failure,” W. Gerberich and W. Yang, eds., Elsevier Science, pp. 551–579, Chap. 8.16.
Wildoer,  J. W. G., Venema,  L. C., Rinzler,  A. G., Smalley,  R. E., and Dekker,  C., 1998, “Electronic Structure of Atomically Resolved Carbon Nanotubes,” Nature (London), 391, pp. 59–62.
Odom,  T. W., Huang,  J.-L., Kim,  P., and Lieber,  C. M., 1998, “Atomic Structure and Electronic Properties of Single-Walled Carbon Nanotubes,” Nature (London), 391, pp. 62–64.
Darkrim,  F., and Levesque,  D., 1998, “Monte Carlo Simulations of Hydrogen Adsorption in Single-Walled Carbon Nanotubes,” J. Chem. Phys., 109, pp. 4981–4984.
Ye,  Y., Anh,  C. C., Witham,  C., Fultz,  B., Liu,  J., Rinzler,  A. G., Colbert,  D., Smith,  K. A., and Smalley,  R. E., 1999, “Hydrogen Adsorption and Cohesive Energy of Single-Walled Carbon Nanotubes,” Appl. Phys. Lett., 74, pp. 2307–2309.
Kolmogorov,  A. N., and Crespi,  V. H., 2000, “Smoothest Bearings: Interlayer Sliding in Multiwalled Carbon Nanotubes,” Phys. Rev. Lett., 85, pp. 4727–4730.
Falvo,  M. R., Taylor,  R. M., Helser,  A., Chi,  V., Brooks,  F. P., Washburn,  S., and Superfine,  R., 1999, “Nanometer Scale Rolling and Sliding of Carbon Nanotubes,” Nature (London), 397, pp. 236–238.
Falvo,  M. R., Steele,  J., Taylor,  R. M., and Superfine,  R., 2000, “Evidence of Commensurate Contact and Rolling Motion: AFM Manipulation Studies of Carbon Nanotubes on HOPG,” Tribol. Lett., 9, pp. 73–76.
Falvo,  M. R., Steele,  J., Taylor,  R. M., and Superfine,  R., 2000, “Gearlike Rolling Motion Mediated by Commensurate Contact: Carbon Nanotubes on HOPG,” Phys. Rev. B, 62, pp. R10665–R10667.
Buldum,  A., and Lu,  J. P., 1999, “Atomic Scale Sliding and Rolling of Carbon Nanotubes,” Phys. Rev. Lett., 83, pp. 5050–5053.
Cumings,  J., and Zettl,  A., 2000, “Low-Friction Nanoscale Linear Bearing Realized From Multiwall Carbon Nanotubes,” Science, 289, pp. 602–604.
Yu,  M.-F., Yakobson,  B. I., and Ruoff,  R. S., 2000, “Controlled Sliding and Pullout of Nested Shells in Individual Multiwalled Carbon Nanotubes,” J. Phys. Chem. B, 104, pp. 8764–8767.
Gao,  G., Cagin,  T., and Goddard,  W. A., 1998, “Energetics, Structure, Mechanical and Vibrational Properties of Single-Walled Carbon Nanotubes,” Nanotechnology, 9, pp. 184–191.
Han,  J., Globus,  A., Jaffe,  R., and Deardorff,  G., 1997, “Molecular Dynamics Simulation of Carbon Nanotube Based Gears,” Nanotechnology, 8, pp. 95–102.
Yoon,  Y.-G., Mazzoni,  M. S. C., Choi,  H. J., Ihm,  J., and Louie,  S. G., 2001, “Structural Deformation and Intertube Conductance of Crossed Carbon Nanotube Junctions,” Phys. Rev. Lett., 86, pp. 688–691.
Yang,  W., Wang,  H. T., and Huang,  Y., 2003, “Abnormal Tribological Behavior of Multiwalled Nanotube Rafts, Part I: Aligned Rafts,” Proc. R. Soc. London, Ser. A, submitted.
Yang,  W., Wang,  H. T., and Huang,  Y., 2003, “Abnormal Tribological Behavior of Multiwalled Nanotube Rafts, Part II: Inclined Rafts,” Proc. R. Soc. London, Ser. A, submitted.
Brenner,  D. W., 1990, “Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor-Deposition of Diamond Films,” Phys. Rev. B, 42, pp. 9458–9471.
Lu,  J. P., 1997, “Elastic Properties of Carbon Nanotubes and Nanoropes,” Phys. Rev. Lett., 79, pp. 1297–1300.
Zhao,  Y., Ma,  C.-C., Chen,  G.-H., and Jiang,  Q., 2003, “Energy Dissipation Mechanisms in Carbon Nanotube Oscillators,” Phys. Rev. Lett., 91, Art. No. 175504.
Zhang,  P., Huang,  Y., Geubelle,  P. H., Klein,  P. A., and Hwang,  K. C., 2002, “The Elastic Modulus of Single-Wall Carbon Nanotubes: A Continuum Analysis Incorporating Interatomic Potentials,” Int. J. Solids Struct., 39, pp. 3893–3906.
Robertson,  D. H., Brenner,  D. W., and Mintmire,  J. W., 1992, “Energetics of Nanoscale Graphitic Tubules,” Phys. Rev. B, 45, pp. 12592–12595.
Jiang,  H., Zhang,  P., Liu,  B., Huang,  Y., Geubelle,  P. H., Gao,  H., and Hwang,  K. C., 2003, “The Effect of Nanotube Radius on the Constitutive Model for Carbon Nanotubes,” Comput. Mater. Sci., 28, pp. 429–442.
Timoshenko, S. P., and Goodier, J. N., 1987, Theory of Elasticity, 3rd Ed., McGraw-Hill, New York.
Johnson,  K. L., Kendall,  K., and Roberts,  A. D., 1971, “Surface Energy and Contact of Elastic Solids,” Proc. R. Soc. London, Ser. A, 324, pp. 301–313.
Yu,  H. H., and Suo,  Z., 1998, “A Model of Wafer Bonding by Elastic Accommodation,” J. Mech. Phys. Solids, 46, pp. 829–844.


Grahic Jump Location
Two parallel (10,10) SWCNTs under compression: (a) initial contact; (b) after vertical compression of 7 angstroms; and (c) after vertical compression of 12 angstroms
Grahic Jump Location
Frictional force versus pressure curve for two parallel (10,10) SWCNTs
Grahic Jump Location
Three parallel (10,10) SWCNTs under compression: (a) initial contact; (b) after vertical compression of 10 angstroms; and (c) after vertical compression of 16 angstroms
Grahic Jump Location
Elastic spring back of three parallel (10,10) SWCNTs when the middle tube is pulled out
Grahic Jump Location
Friction behavior for three vertically aligned (10,10) nanotubes: (a) friction force varies with the pulling time; and (b) averaged friction force versus pressure curve
Grahic Jump Location
Undeformed configuration of two SWCNT
Grahic Jump Location
The local contact edge between a pair of SWCNTs
Grahic Jump Location
Upper SWCNT deformed by the adhesion of two SWCNTs in intimate contact
Grahic Jump Location
Comparing the results of the molecular dynamics and the thin beam model for naturally adhering SWCNTs
Grahic Jump Location
(a) Deformed configuration of a pair of SWCNTs under the load P; and (b) geometric description of the deformed arc
Grahic Jump Location
Curve between the frictional force and the load P under thin beam and local adhesion analysis




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In