Thermal Expansion of Single Wall Carbon Nanotubes

[+] Author and Article Information
H. Jiang, B. Liu, Y. Huang

Department of Mechanical and Industrial Engineering, University of Illinois, Urbana, IL 61801

K. C. Hwang

Department of Engineering Mechanics, Tsinghua University, Beijing, China 100084

J. Eng. Mater. Technol 126(3), 265-270 (Jun 29, 2004) (6 pages) doi:10.1115/1.1752925 History: Received December 15, 2002; Revised March 01, 2004; Online June 29, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.


Iijima,  S., 1991, “Helical Microtubules of Graphite Carbon,” Nature (London), 354(6348), pp. 56–58.
Ruoff,  R. S., and Lorents,  D. C., 1995, “Mechanical and Thermal Properties of Carbon Nanotubes,” Carbon, 33(7), pp. 925–930.
Srivastava,  D., Menon,  M., and Cho,  K. J., 2001, “Computational Nanotechnology With Carbon Nanotubes and Fullerenes,” Comput. Sci. Eng., 3(4), pp. 42–55.
Yakobson, B. I., and Avouris, P., 2001, “Topics of Applied Physics,” Carbon Nanotubes, M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, 80 , pp. 287–329.
Qian,  D., Wagner,  G. J., Liu,  W. K., Yu,  M.-F., and Ruoff,  R. S., 2002, “Mechanics of Carbon Nanotubes,” Appl. Mech. Rev.,55(6), pp. 495–553.
Thostenson,  E. T., Ren,  Z., and Chou,  T. W., 2001, “Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review,” Combust. Sci. Technol., 61(13), pp. 1899–1912.
Heath,  J. R., 2002, “Wires, Switches, and Wiring: A Route Toward a Chemically Assembled Electronic Nanocomputer,” Pure Appl. Chem., 72(1–2), pp. 11–20.
Tans,  S. J., Verschueren,  A. R. M., and Dekker,  C., 1998, “Room-Temperature Transistor Based on a Single Carbon Nanotube,” Nature (London), 393(6680), pp. 49–52.
Hu,  J. T., Min,  O. Y., Yang,  P. D., and Lieber,  C. M., 1999, “Controlled Growth and Electrical Properties of Heterojunctions of Carbon Nanotubes and Silicon Nanowires,” Nature (London), 399(6731), pp. 48–49.
Bachtold,  A., Hadley,  P., Nakanishi,  T., and Dekker,  C., 2001, “Logic Circuits With Carbon Nanotube Transistors,” Science, 294(5545), pp. 1317–1320.
Appenzeller,  J., Knoch,  J., Derycke,  V., Martel,  R., Wind,  S., and Avouris,  P., 2002, “Field-Modulated Carrier Transport in Carbon Nanotube Transistors,” Phys. Rev. Lett., 89(12), pp. 126801-1–120801-4.
Avouris,  P., Martel,  R., Derycke,  V., and Appenzeller,  J., 2002, “Carbon Nanotube Transistors and Logic Circuits,” Physica B, 323(1–4), pp. 6–14.
Derycke,  V., Martel,  R., Appenzeller,  J., and Avouris,  P., 2002, “Controlling Doping and Carrier Injection in Carbon Nanotube Transistors,” Appl. Phys. Lett., 80(15), pp. 2773–2775.
Leonard,  F., and Tersoff,  J., 2002, “Multiple Functionality in Nanotube Transistors,” Appl. Phys. Lett., 88(25), pp. 258302-1–258302-4.
Rosenblatt,  S., Yaish,  Y., Park,  J., Gore,  J., Sazonova,  V., and McEuen,  P. L., 2002, “High Performance Electrolyte Gated Carbon Nanotube Transistors,” Nano Lett., 2(8), pp. 869–872.
Swenson,  C. A., 1983, “Recommended Values for the Thermal Expansivity of Silicon From 0-K to 1000-K,” J. Phys. Chem. Ref. Data, 12(2), pp. 179–182.
Kagaya,  H. M., and Soma,  T., 1985, “Temperature-Dependence of the Linear Thermal-Expansion Coefficient for Si and Ge,” Phys. Status Solidi B, 129(1), pp. K5–K8.
White, G. K., and Minges, M. L., 1985, Thermophysical Properties of Some Key Solids, Pergamon, New York.
Kayago,  H. M., Shoji,  N., and Soma,  T., 1987, “Specific-Heat and Thermal-Expansion at High-Temperatures of Si and Ge,” Phys. Status Solidi B, 142(1), pp. K13–K17.
Madelung, O., 1987, Landolt-Bornstein, New Series, Intrinsic Properties of Group IV Elements and III–V, II–VI, and I–VII Compounds, Springer-Verlag, Berlin.
Biernacki,  S., and Scheffler,  M., 1989, “Negative Thermal Expansion of Diamond and Zinc-Blende Semiconductors,” Phys. Rev. Lett., 63(3), pp. 290–293.
Buda,  F., Car,  R., and Parrinello,  M., 1990, “Thermal-Expansion of C-Si Via Ab Initio Molecular-Dynamics,” Phys. Rev. B, 41(3), pp. 1680–1683.
Xu,  C. H., Wang,  C. Z., Chan,  C. T., and Ho,  K. M., 1991, “Theory of the Thermal Expansion of Si and Diamond,” Phys. Rev. B, 43(6), pp. 5024–5027.
Biernacki,  S., and Scheffler,  M., 1994, “The Influence of the Isotopic Composition on Crystalline Si,” J. Phys.: Condens. Matter, 6(26), pp. 4879–4884.
Fabian,  J., and Allen,  P. B., 1997, “Thermal Expansion and Gruneisen Parameters of Amorphous Silicon: A Realistic Model Calculation,” Phys. Rev. Lett., 79(10), pp. 1885–1888.
Bandow,  S., 1997, “Radial Thermal Expansion of Purified Multiwall Carbon Nanotubes Measured by X-Ray Diffraction,” Jpn. J. Appl. Phys., Part 2, 36(10B), pp. 1403–1405.
Maniwa,  Y., Fujiwara,  R., Kira,  H., Tou,  H., Nishibori,  E., Takata,  M., Sakata,  M., Fujiwara,  A., Zhao,  X., Jijima,  S., and Ando,  Y., 2001, “Multiwalled Carbon Nanotubes Grown in Hydrogen Atmosphere: A X-Ray Diffractionf Study,” Phys. Rev. B, 64(7), pp. 073105-1–073105-4.
Yosida,  Y., 2000, “High-Temperature Shrinkage of Single-Walled Carbon Nanotube Bundles up to 1600K,” J. Appl. Phys., 87(7), pp. 3338–3341.
Maniwa,  Y., Fujiwara,  R., Kira,  H., Tou,  H., Kataura,  H., Suzuki,  S., Achiba,  Y., Nishibori,  E., Takata,  M., Sakata,  M., Fujiwara,  A., and Suematsu,  H., 2001, “Thermal Expansion of Single-Walled Carbon Nanotube (SWNT) Bundles: X-Ray Diffraction Studies,” Phys. Rev. B, 64(24), pp. 241402-1–241402-3.
Wei,  C., Srivastava,  D., and Cho,  K., 2002, “Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites,” Nano Lett., 2(6), pp. 647–650.
Raravikar,  N. R., Keblinski,  P., Rao,  A. M., Dresselhaus,  M. S., Schadler,  L. S., and Ajayan,  P. M., 2002, “Temperature Dependence of Radial Breathing Mode Raman Frequency of Single-Walled Carbon Nanotubes,” Phys. Rev. B, 66(23), pp. 235424-1–235424-9.
Tersoff,  J., 1988, “New Empirical Approach for the Structure and Energy of Covalent Systems,” Phys. Rev. B, 37(12), pp. 6991–7000.
Brenner,  D. W., 1990, “Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films,” Phys. Rev. B, 42(15), pp. 9458–9471.
Billings, B. H., and Gray, D. E., 1972, American Institute of Physics Handbook, McGraw-Hill, New York.
Chandler, D., 1987, Introduction to Modern Statistical Mechanics, Oxford University Press, Oxford.
Saito, R., Dresselhaus, G., and Dresselhaus, M. S., 1998, Physical Properties of Carbon Nanotubes, Imperial College Press, London.
Sanchez-Portal,  D., Artacho,  E., and Solar,  J. M., 1999, “Ab Initio Structure, Elastic, and Vibrational Properties of Carbon Nanotubes,” Phys. Rev. B, 59(19), pp. 12678–12688.
Foiles,  S. M., 1994, “Evaluation of Harmonic Methods for Calculating the Free Energy of Defects in Solids,” Phys. Rev. B, 49(21), pp. 14930–14938.


Grahic Jump Location
A carbon nanotube (CNT): (a) the tubular structure of CNT; (b) a planar, “unrolled” CNT; and (c) a representative atom (A) and its three nearest-neighbor atoms (B, C, and D)
Grahic Jump Location
The temperature dependence of the radial and axial coefficients of thermal expansion for (5,5) and (9,0) carbon nanotubes together with that for a flat graphene sheet
Grahic Jump Location
The temperature dependence of the coefficient of thermal expansion in the radial direction for (5,5), (6,4), and (7,3) carbon nanotubes
Grahic Jump Location
The diameter-dependence of the coefficients of thermal expansion for armchair and zigzag carbon nanotubes at 400 K



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In