Chaboche, J. L., Dang Van K., and Cordier, G., 1979, “Modelization of the Strain Memory Effect on the Cyclic Hardening of 316 Stainless Steel,” *Proc. of 5th SMIRT Conf.*, Paper No. L11/3, Berlin, pp. 1–10.

Hopperstad,
O. S., Langseth,
M., and Remseth,
S., 1995, “Cyclic Stress-Strain Behavior of Alloy AA6060, Part I: Uniaxial Experiments and Modeling,” Int. J. Plast., 11(6), pp. 725–739.

Ohno,
N., 1982, “A Constitutive Model of Cyclic Plasticity with a Nonproportional Strain Range,” ASME J. Appl. Mech., 49, pp. 721–727.

Ohno,
N., and Kachi,
Y., 1986, “A Constitutive Model of Cyclic Plasticity for Nonlinear Hardening Materials,” ASME J. Appl. Mech., 53, pp. 395–403.

Kang,
G., Ohno,
N., and Nebu,
A., 2003, “Constitutive Modeling of Strain Range Dependent Cyclic Hardening,” Int. J. Plast., 19, pp. 1801–1819.

Krempl,
E., and Lu,
H., 1984, “The Hardening and Rate Dependent Behavior of Fully Annealed AISI Type 304 Stainless Steel Under Biaxial In-Phase and Out-of-Phase Strain Cycling at Room Temperature,” ASME J. Eng. Mater. Technol., 106, pp. 376–382.

Cailletaud,
G., Kaczmarek,
H., and Policella,
H., 1984, “Some Elements on Multiaxial Behavior of 316 L Stainless Steel at Room Temperature,” Mech. Mater., 3, pp. 333–347.

McDowell,
D. L., Stahl,
D. R., Stock,
S. R., and Antolovich,
S. D., 1988, “Biaxial Path Dependence of Deformation Substructure of Type 304 Stainless Steel,” Metall. Trans. A, 19A, pp. 1277–1293.

Jiang,
Y., and Kurath,
P., 1997, “Nonproportional Cyclic Deformation: Critical Experiments and Analytical Modeling,” Int. J. Plast., 13(8–9), pp. 743–763.

Hopperstad,
O. S., Langseth,
M., and Remseth,
S., 1995, “Cyclic Stress-Strain Behavior of Alloy AA6060 T4, Part II: Biaxial Experiments and Modeling,” Int. J. Plast., 11(6), pp. 741–762.

Nouailhas,
D., Chaboche,
J. L., Savalle,
S., and Cailletaud,
G., 1985, “On the Constitutive Equations for Cyclic Plasticity Under Nonproportional Loading,” Int. J. Plast., 1, pp. 317–330.

McDowell,
D. L., 1985, “A Two Surface Model for Transient Nonproportional Cyclic Plasticity: Part 1 Development of Appropriate Equations,” ASME J. Appl. Mech., 52, pp. 298–302.

McDowell,
D. L., 1985, “A Two Surface Model for Transient Nonproportional Cyclic Plasticity: Part 2 Comparison of Theory with Experiments,” ASME J. Appl. Mech., 52, pp. 303–308.

Doong,
S. H., and Socie,
D. F., 1991, “Constitutive Modeling of Metals Under Nonproportional Cyclic Loading,” ASME J. Eng. Mater. Technol., 113, pp. 23–30.

Moosbrugger,
J. C., 2000, “Anisotropic Nonlinear Kinematic Hardening Rule Parameters From Reversed Proportional Axial-Torsional Cycling,” ASME J. Eng. Mater. Technol., 122, pp. 20–28.

Voyiadjis,
G. J., and Basuroychowdhury,
I. N., 1998, “A Plasticity Model for Multiaxial Cyclic Loading and Ratchetting,” Acta Mech., 126, pp. 19–35.

Molinari,
A., Ahzi,
S., and Kouddane,
R., “On the Self Consistent Modeling of Elastic-Plastic Behavior of Polycrystals,” Mech. Mater., 26, pp. 43–62.

Cailletaud,
G., 1992, “A Micromechanical Approach to Inelastic Behavior of Metals,” Int. J. Plast., 8, pp. 55–73.

Marin,
E. B., and Dawson,
P. R., 1998, “On Modeling the Elasto-Viscoplastic Response of Metals Using Polycrystal Plasticity,” Comput. Methods Appl. Mech. Eng., 165, pp. 1–21.

Miller,
M. P., and Barton,
N., 2000, “Representing the Effect of Crystallographic Texture on the Anisotropic Performance Behavior of Rolled Aluminum Plate,” ASME J. Eng. Mater. Technol., 122, pp. 10–17.

Dingli,
J. P., Abdul-Latif,
A., and Saanouni,
K., 2000, “Predictions of the Complex Cyclic Behavior of Polycrystals Using a Self-Consistent Modeling,” Int. J. Plast., 16, pp. 411–437.

Toth,
L. S., Molinari,
A., and Zouhal,
N., 2000, “Cyclic Plasticity Phenomena as Predicted by Polycrystal Plasticity,” Mech. Mater., 32, pp. 99–113.

Takahashi,
H., Fujiwara,
K., and Nakagawa,
T., 1998, “Multiple-Slip Work-Hardening Model in Crystals With Application to Torsion-Tension Behaviors of Aluminum Tubes,” Int. J. Plast., 14, pp. 489–509.

Cailletaud, G., Doquet, V., and Pineau, A., 1991, “Cyclic Multiaxial Behavior of an Austenitic Stainless Steel: Microstructural Observations and Micromechanical Modelling,” *3rd International Conference on Biaxial/Multiaxial Fatigue*, Stuttgart, Germany, pp. 131–149.

Song,
X. P., Chen,
G. L., and Gu,
H. C., 2002, “Low Cycle Fatigue Behavior of Commercial Purity Titanium in Liquid Nitrogen,” Int. J. Fatigue, 24, pp. 49–56.

Mangonon,
P. L., and Thomas,
G., 1970, “The Martensite Phases in 304 Stainless Steel,” Metall. Trans., 1, pp. 1577–1586.

Murr,
L. E., Staudhammer,
K. P., and Hecker,
S. S., 1982, “Effects of Strain State and Strain Rate on Deformation-Induced Transformations in 304 Stainless Steel: Part II, Microstructural Study,” Metall. Trans. A, 13A, pp. 627–635.

Stout,
M. G., and Follansbee,
P. S., 1986, “Strain Rate Sensitivity, Strain Hardening and Yield Behavior of 304L Stainless Steel,” ASME J. Eng. Mater. Technol., 108, pp. 344–353.

Miller,
M. P., and McDowell,
D. L., 1996, “The Effect of Stress State on the Large Strain Inelastic Deformation Behavior of 304L Stainless Steel,” ASME J. Eng. Mater. Technol., 118(1), pp. 28–36.

Doong,
S. H., Socie,
D. F., and Robertson,
I. M., 1990, “Dislocation Substructures and Nonproportional Hardening,” ASME J. Eng. Mater. Technol., 112, pp. 456–464.

Moosbrugger, J. C., 1988, “A Rate-Dependent Bounding Surface Model for Nonproportional Cyclic Viscoplasticity,” Ph.D. Thesis, Georgia Institute of Technology.

Havner, K. S., 1992, *Finite Plastic Deformation of Crystalline Solids*, Cambridge University Press, Cambridge, England.

Khan, A. K., and Huang, S., 1995, *Continuum Theory of Plasticity*, Wiley, New York.

Kocks, U. F., Tome, C. N., and Wenk, H. R., 1998, *Texture and Anisotropy*, Cambridge University Press, Cambridge, England.

Barton,
N., Dawson,
P. R., and Miller,
M. P., 1999, “Yield Strength Asymmetry Predictions From Polycrystal Plasticity,” ASME J. Eng. Mater. Technol., 121, pp. 230–239.

Marin,
E. B., and Dawson,
P. R., 1998, “Elastoplastic Finite Element Analysis of Metal Deformations Using Polycrystal Constitutive Models,” Comput. Methods Appl. Mech. Eng., 165, pp. 23–41.