Bilinear Behavior in Nano and Microindentation Tests of fcc Polycrystalline Materials

[+] Author and Article Information
A. A. Elmustafa

Department of Mechanical and Aerospace Engineering, Princeton Institute of Science and Technology of Materials, Princeton University, Princeton, NJ  

A. A. Ananda

NASA Langley Research Center-ConITS, Hampton, VA

W. M. Elmahboub

Department of Mathematics, School of Science, Hampton University, Hampton, VA

J. Eng. Mater. Technol 126(4), 353-359 (Nov 09, 2004) (7 pages) doi:10.1115/1.1789962 History: Received September 05, 2003; Revised March 24, 2004; Online November 09, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.


Fleck,  N. A., Muller,  G. M., Ashby,  M. F., and Hutchinson,  J. W., 1994, “Strain Gradient Plasticity: Theory and Experiment,” Acta Metall. Mater., 42(2), pp. 475–487.
Stolken,  J. S., and Evans,  A. G., 1998, “A Microbend Test Method for Measuring the Plasticity Length Scale,” Acta Metall. Mater., 46, pp. 5109–5115.
Poole,  W. J., Ashby,  M. F., and Fleck,  N. A., 1996, “Micro-hardness of Annealed and Work-hardened Copper Polycrystals,” Acta Metall., 34(4), pp. 559–564.
McElhaney,  K. W., Vlassak,  J. J., and Nix,  W. D., 1998, “Determination of Indenter Tip Geometry and Indentation Contact Area for Depth-sensing Indentation Experiments,” J. Mater. Res., 13(5), pp. 1300–1306.
Ma,  Q., and Clarke,  D. R., 1995, “Size Dependent Hardness of Silver Single Crystals,” J. Mater. Res., 10(4), pp. 853–863.
Stelmashenko,  N. A., Walls,  M. G., Brown,  L. M., and Milman,  Yu. V., 1993, “Microindentation on W and Mo Oriented Single Crystals: An STM Study,” Acta Metall., 41(10), pp. 2855–2865.
Hutchinson,  J. W., 2000, “Plasticity at the Micron Scale,” Int. J. Solids Struct., 37(1–2), pp. 225–238.
Fleck,  N. A., and Hutchinson,  J. W., 1993, “A Phenomenological Theory for Strain Gradient Effects in Plasticity,” J. Mech. Phys. Solids, 41(12), pp. 1825–1857.
Fleck,  N. A., and Hutchinson,  J. W., 2001, “A Reformulation of Strain Gradient Plasticity,” J. Mech. Phys. Solids, 49(10), pp. 2245–2271.
Nix,  W. D., and Gao,  H., 1998, “Indentation Size Effect in Crystalline Materials: A Law for Strain Gradient Plasticity,” J. Mech. Phys. Solids, 46(3), pp. 411–425.
Fleck, N. A., and Hutchinson, and J. W., 1997, “Strain Gradient Plasticity,” in Advances in Applied Mechanics, J. W. Hutchinson and T. Y. Wu, eds., Academic Press, New York, Vol. 33, p. 295.
Gao,  H., Huang,  Y., Nix,  W. D., and Hutchison,  J. W., 1999, “Mechanism-based Strain Gradient Plasticity–I. Theory,” J. Mech. Phys. Solids, 47(6), pp. 1239–1263.
Huang,  Y., Gao,  H., Nix,  W. D., and Hutchinson,  J. W., 2000, “Mechanism-based Strain Gradient Plasticity–II. Analysis,” J. Mech. Phys. Solids, 48(1), pp. 99–128.
Duan,  D.-M., Wu,  N. Q., Slaughter,  W. S., and Mao,  S. X., 2000, “Length Scale Effect on Mechanical Behavior Due to Strain Gradient Plasticity,” Mater. Sci. Eng., A, 303(1–2), pp. 241–249.
Weertman,  J., 2002, “Anomalous Work Hardening, Non-redundant Screw Dislocations in a Circular Bar Deformed in Torsion, and Non-redundant Edge Dislocations in a Bent Foil,” Acta Mater., 50, pp. 673–689.
Elmustafa, A. A., and Stone, D. S., 1999, “Indentation Size Effect: A Kinetic Perspective,” in Advanced Materials for the 21st Century, 1999 Julia Weertman Symp., Y.-W. Chung, and D. C. Dunand, eds., Cincinnati, OH, pp. 311–321.
Elmustafa,  A. A., and Stone,  D. S., 2003, “Nanoindentation and the Indentation Size Effect: Kinetics of Deformation and Strain Gradient Plasticity,” J. Mech. Phys. Solids, 51(2), pp. 357–381.
Joslin,  D. L., and Oliver,  W. C., 1990, “A New Method for Analyzing Data from Continuous Depth-Sensing Microindentation Tests,” J. Mater. Res., 5(1), pp. 123–126.
Stone,  D. S., Yoder,  K. B., and Sproul,  W. D., 1991, “Hardness and Elastic Modulus of TiN Based on Continuous Indentation Technique and New Correlation,” J. Vac. Sci. Technol., 9(4), pp. 2543–2547.
Lim,  Y. Y., and Chaudhri,  M. M., 1999, “The Effect of Indenter Load on the Nanohardness of Ductile Metals: An Experimental Study on Polycrystalline Workhardened and Annealed Oxygen-free Copper,” Philos. Mag. A, 79, pp. 2979–3000.
Swadener,  J. G., George,  E. P., and Pharr,  G. M., 2002, “The Correlation of the Indentation Size Effect Measured With Indenters of Various Shapes,” J. Mech. Phys. Solids, 50, pp. 681–694.
Xin,  X. J., Daehn,  G. S., and Wagoner,  R. H., 1997, “Equilibrium Configuration of Coaxial Prismatic Dislocation Loops and Related Size-dependent Plasticity,” Acta Mater., 45, pp. 1821–1836.
Kassner,  M. E., Perez-Prado,  M.-T., Vecchio,  K. S., and Wall,  M. A., 2000, “Determination of Internal Stresses in Cyclically Deformed Copper Single Crystals Using Convergent-Beam Electron Diffraction and Dislocation Dipole Separation Measurements,” Acta Mater., 48, pp. 4247–4254.
Tippelt,  B., Bretschneider,  J., and Hähner,  P., 1997, “The Dislocation Microstructure of Cyclically Deformed Nickel Single Crystals at Different Temperatures,” Phys. Status Solidi A, 163, pp. 11–26.
Verecky,  S., Kratochvil,  J., and Kroupa,  F., 2002, “The Stress Field of a Rectangular Prismatic Dislocation Loops,” Phys. Status Solidi A, 191, pp. 418–426.
Elmustafa,  A. A., and Stone,  D. S., 2002, “Indentation Size Effect in Polycrystalline F.C.C. Metals,” Acta Metall. Mater., 50(14), pp. 3641–3650.
Taylor,  G., 1992, “Thermally-activated Deformation of bcc Metals and Alloys,” Prog. Mater. Sci., 36, pp. 29–61.
Conrad, H., 1965, in High Strength Materials, V. F. Zackay, ed., Wiley, New York, p. 436.
Briggs,  T. L., and Campbell,  J. D., 1972, “The Effect of Strain Rate and Temperature on the Yield and Flow Stress of Polycrystalline Niobium and Molybdenum,” Acta Metall., 20, pp. 711–724.
Boyer, H. E., and Gall, T. L., 1985, Metals Handbook, Desk Edition, American Society for Metals, Metals Park, Ohio.
Stone, D. S., and Yoder, K. B., 1993, in Load and Depth-Sensing Indentation Tester for Properties Measurement at Non-Ambient Temperatures: Thin Films, Stresses and Mechanical Properties IV, Mat. Res. Soc. Proc. Vol. 308, P. H. Townsend, T. Weihs, J. E. Sanchez, Jr., and P. Borgensen, eds., Pittsburgh, Mat. Res. Soc., p. 121.
Yoder, K. B., and Stone, D. S., 1993, “Load-and-depth-sensing Indentation Tester for Properties Measurement at Non-ambient Temperatures,” in Mat. Res. Soc. Proc., Mat. Res. Soc., Pittsburgh, p. 308.
Elmustafa,  A. A., and Stone,  D. S., 2003, “Stacking Fault Energy and Dynamic Recovery: Do They Impact the Indentation Size Effect,” Mater. Sci. Eng., A, 238, pp. 1–8.
Kramer,  D., Juang,  H., Kriese,  M., Robach,  J., Nelson,  J., Wright,  A., Bahr,  D., and Gerberich,  W. W., 1999, “Yield Strength Predictions From the Plastic Zone Around Nanocontacts,” Acta Metall. Mater., 47(1), pp. 333–343.
Gao,  H., Huang,  Y., and Nix,  W. D., 1999, “Modeling Plasticity at the Micrometer Scale,” Naturwissenschaften, 86, pp. 507–515.
Kroupa,  F., 1960, “Circular Edge Dislocation Loop,” Czech. J. Phys., Sect. B, 10, pp. 284–293.
Khraishi,  T. A., Zbib,  H. M., Hirth,  J. P., and de La Rubia,  T. D., 2000, “The Stress Field of a General Volterra Dislocation Loop,” Philos. Mag. A, 80, pp. 95–105.
Elmustafa, A. A., Ananda, A. A., and Elmahboub, W. I., “Dislocation Mechanics Simulation of the Bilinear Behavior in Micro and Nanoindentations,” J. Mater. Res., 19 (3), pp. 768–779.


Grahic Jump Location
Comparison of measured areas based on electron and optical microscopy and areas based on contact stiffness. The solid line represents A(stiffness)=A(optical). The best fit to the data is a line of slope of 1.03 (dotted line).
Grahic Jump Location
Hardness vs. load for annealed and work-hardened α-brass. The data includes nanohardness and microhardness measurements.
Grahic Jump Location
Circular prismatic dislocation loops injected inside a three-sided Berkovich pyramidal indentation for work hardened mechanically polished α-brass samples. Image represents SEM micrograph.
Grahic Jump Location
3D circular prismatic dislocation loops in a three-sided Berkovich indentations
Grahic Jump Location
H12/C12 versus 1/D, for α-brass, OFC, and iridium samples
Grahic Jump Location
Geometry of injected geometrically necessary circular dislocation (GNDs) loops in indentation testing
Grahic Jump Location
Normalized shear stress, τxz, versus x/R for prismatic circular dislocation loops for indentations at onset of bilinear behavior and shallow depth of indentation for annealed and work hardened α-brass samples
Grahic Jump Location
Normalized shear stress, τXZ, versus depth for prismatic circular dislocation loops for α-brass, and OFC at deep, onset of bilinear behavior, and shallow depth of indentation




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In