0
TECHNICAL PAPERS

Stress Analyses and Geometry Effects During Cyclic Loading Using Thermography

[+] Author and Article Information
B. Yang, P. K. Liaw, D. E. Fielden

Materials Science and Engineering Department, The University of Tennessee, Knoxville, TN 37996-2200

J. Y. Huang, R. C. Kuo

Institute of Nuclear Energy Research (INER), P.O. Box 3-14, 1000 Wenhua Road, Chiaan Village, Lungtan, Taiwan 325, Republic of China

J. G. Huang

Taiwan Power Company, Taipei, Taiwan

J. Eng. Mater. Technol 127(1), 75-82 (Feb 22, 2005) (8 pages) doi:10.1115/1.1836793 History: Received January 01, 2003; Revised September 14, 2004; Online February 22, 2005
Copyright © 2005 by ASME
Your Session has timed out. Please sign back in to continue.

References

Margulies,  L., Winther,  G., and Poulsen,  H. F., 2001, “In Situ Measurement of Grain Rotation during Deformation of Polycrystals,” Science, 291, pp. 2392–2394.
Larson,  B. C., Yang,  W., Ice,  G. E., Budai,  J. D., and Tischler,  J. Z., 2002, “Three-Dimensional X-Ray Structural Microscopy with Submicrometre Resolution,” Nature (London), 415, pp. 887–890.
Wang,  Y. D., Tian,  H., Stoica,  A. D., Wang,  X., Liaw,  P. K., and Richardson,  J. W., 2003, “The Development of Residual Stresses due to Grain Orientation in a Cyclically Deformed Alloy,” Nature Materials, 2(2), pp. 101–106, http://www.nature.com/cgi-taf/DynaPage.taf?file=/nmat/journal/v2/n2/full/nmat812.html.
Jiang, L., Huang, M., Brooks, C. R., and Liaw, P. K., 1999, “Acoustic Emission Detection of Fatigue Damage,” in Proceeding of Nondestructive Evaluation (NDE) and Materials Properties IV Symposium, TMS, edited by Liaw, P. K., Arsenault, R. J., Green, Jr., R. E., Murty, K. L., and Thompson, R. B., pp. 43–60.
Fine, M. E., Connor, Z. M., and Achenbach, J. D., 1999, “Early Stages of Fatigue Damage in Riveted Alclad 2024-T3 Aluminum Alloy Lap Joint Specimens,” in Proceeding of Nondestructive Evaluation (NDE) and Materials Properties IV Symposium, TMS, edited by Liaw, P. K., Arsenault, R. J., Green, Jr., R. E., Murty, K. L., and Thompson, R. B., pp. 1–9.
Birnbaum, G., and Free, G., 1979, “Eddy-current Characterization of Materials and Structures: A Symposium/Sponsored by ASTM Committee E-7 on Nondestructive Testing,” American Society for Testing and Materials, Gaithersburg, MD, 5–7 September.
Moss, A. A., and Goldberg, H. I., 1979, “Computed Tomography, Ultrasound and X-Ray: An Integrated Approach,” Masson Publication.
Jiang,  L., Liaw,  P. K., Brooks,  C. R., Somieski,  B., and Klarstrom,  D. L., 2001, “Nondestructive Evaluation of Fatigue Damage in ULTIMET® Superalloy,” Mater. Sci. Eng., A, 313(1–2), pp. 153–159.
Jeong,  H., Hsu,  D. K., and Liaw,  P. K., 1998, “Anisotropic Conductivities of Multiphase Particulate Metal-Matrix Composites,” Compos. Sci. Technol., 58, pp. 65–76.
Liaw,  P. K., Hsu,  D. K., Yu,  N., Miriyala,  N., and Jeong,  H., 1996, “Investigation of Metal and Ceramic-Matrix Composites Moduli: Experiment and Theory,” Acta Mater., 44(5), pp. 2101–2113.
Pitchumany,  R., Liaw,  P. K., Yao,  S. C., Hsu,  D. K., and Jeong,  H., 1995, “Theoretical-Models for the Anisotropic Conductivities of 2-Phase and 3-Phase Metal-Matrix Composites,” Acta Metall. Mater., 43(8), pp. 3045–3059.
Jeong,  H. J., Hsu,  D. K., Shannon,  R. E., and Liaw,  P. K., 1994, “Characterization of Anisotropic Elastic-Constants of Silicon-Carbide Particulate-Reinforced Aluminum Metal-Matrix Composites: 1. Experiment,” Metall. Mater. Trans. A, 25(4), pp. 799–809.
Taylor,  S., and Morken,  J., 1998, “Thermographic Selection of Effective Catalysts from an Encoded Polymer-Bound Library,” Science, 280, pp. 267–270.
Chaerle,  L., Caeneghem,  W. V., Messens,  E., Lambers,  H., Montagu,  M. V., and Straeten,  D. V. D., 1999, “Presymptomatic Visualization of Plant-virus Interactions by Thermography,” Nat. Biotechnol., 17, pp. 813–816.
Ay,  H., Jang,  J., and Yeh,  J. N., 2002, “Local Heat Transfer Measurements of Plate Finned-tube Heat Exchangers by Infrared Thermography,” Int. J. Heat Mass Transfer, 45(20), pp. 4069–4078.
Marwaha,  B., and Luss,  D., 2002, “Formation and Dynamics of a Hot Zone in Radial Flow Reactor,” AIChE J., 48(3), pp. 617–624.
Lohr, D. T., Enke, N. F., and Sandor, B. I., 1987, “Analysis of Fatigue Damage Evolution by Differential Infrared Thermography,” Dynamic Failure: Proceedings of the 1987 SEM Fall Conference, October 25–27, Savannah, Georgia, pp. 169–174.
Liaw,  P. K., Wang,  H., Jiang,  L., Yang,  B., Huang,  J. Y., Kuo,  R. C., and Huang,  J. G., 2000, “Thermographic Detection of Fatigue Damage of Pressure Vessel Steels at 1,000 Hz and 20 Hz,” Scr. Mater., 42, pp. 389–395.
Luong,  M. P., 1998, “Fatigue Limit Evaluation of Metals Using An Infrared Thermographic Technique,” Mech. Mater., 28, pp. 155–163.
Guduru,  P. R., Zehnder,  A. T., Rosakis,  A. J., and Ravichandran,  G., 2001, “Dynamic Full Field Measurements of Crack Tip Temperatures,” Eng. Fract. Mech., 68, pp. 1535–1556.
Machin,  T. J., and Vernon,  P. J., 2001, “Detecting Subsurface Cracking in Laminated Membranes Using Infrared Imaging,” Polym. Compos., 22, pp. 752–761.
Gross,  T. S., and Weertman,  J., 1982, “Calorimetric Measurement of The Plastic Work of Fatigue Crack-propagation in 4140-Steel,” Metall. Mater. Trans. A, 13(12), pp. 2165–2172.
Taylor,  G. I., and Quinney,  H., 1937, “The Latent Heat Remaining in a Metal after Cold Working,” Proc. R. Soc. London, Ser. A, 163, pp. 157–181.
Henneke,  E. G., Reifsnider,  K. L., Shuford,  R. J., Hinton,  Y. L., Markert,  B. R., 1982, “Thermography—Applications to the Manufacture and Non-Destructive Characterization of Composites,” Proc. SPIE, 371, pp. 98–104.
Biot,  M. A., 1956, “Thermoelasticity and Irreversible Thermodynamics,” J. Appl. Phys., 27(3), pp. 240–253.
Rocca,  R., and Bever,  M. B., 1950, “The Thermoelastic Effect in Iron and Nickel as a Function of Temperature,” Trans. AIME, 188, pp. 327–333.
Yang,  B., Liaw,  P. K., Wang,  H., Jiang,  L., Huang,  J. Y., Kuo,  R. C., and Huang,  J. G., 2001, “Thermographic Investigation of The Fatigue Behavior of Reactor Pressure Vessel Steels,” Mater. Sci. Eng., A, 314, pp. 131–139.
Dillon,  O. W., 1963, “Coupled Thermoplasticity,” J. Mech. Phys. Solids, 11, pp. 21–23.
Yang,  B., Liaw,  P. K., Wang,  G., Peter,  W. H., Buchanan,  R. A., Yokoyama,  Y., Huang,  J. Y., Kuo,  R. C., Huang,  J. G., Fielden,  D. E., and Klarstrom,  D. L., 2004, “Thermal-Imaging Technologies for Detecting Damage during High-Cycle Fatigue,” Metall. Mater. Trans. A, 35(1), pp. 15–23.
Zehnder,  A. T., and Rosakis,  A. J., 1991, “On the Temperature Distribution at the Vicinity of Dynamically Propagating Cracks in 4340 Steel,” J. Mech. Phys. Solids, 39, pp. 385–415.
Zhou,  M., Ravichandran,  G., and Rosakis,  A. J., 1996, “Dynamically Propagating Shear Bands in Impact-loaded Prenotched Plates—I. Experimental Investigations of Temperature Signatures and Propagation Speed,” J. Mech. Phys. Solids, 44, pp. 981–1006.
Liaw, P. K., Yang, B., Tian, H., Jiang, L., Wang, H., Huang, J. Y., Kuo, R. C., Huang, J. G., Fielden, D., Strizak, J. P., and Mansur, L. K., 2002, “Frequency Effects on Fatigue Behavior and Temperature Evolution of Steels,” Fatigue and Fracture Mechanics: 33rd Volume, ASTM STP 1417, W. G. Reuter and R. S. Piascik, Eds., ASTM International, West Conshohocken, PA, pp. 524–556.
Jiang,  L., Wang,  H., Liaw,  P. K., Brooks,  C. R., and Klarstrom,  D. L., 2001, “Characterization of the Temperature Evolution during High-Cycle Fatigue of the ULTIMET Superalloy: Experiment and Theoretical Modeling,” Metall. Mater. Trans. A, 32, pp. 2279–2296.
Wang,  H., Jiang,  L., Liaw,  P. K., Brooks,  C. R., and Klasstrom,  D. L., 2000, “Infrared Temperature Mapping of ULTIMET Alloy during High-Cycle Fatigue Tests,” Metall. Mater. Trans. A, 31, pp. 1307–1310.
Jiang,  L., Wang,  H., Liaw,  P. K., Brooks,  C. R., and Klarstrom,  D. L., 2002, “Effects of Cyclic Loading on Temperature Evolution of ULTIMET® Superalloy: Experiment and Theoretical Modeling,” Trans. Nonferrous. Met. Soc. China , 12, pp. 734–747.
Chen,  L. J., Liaw,  P. K., Wang,  H., He,  Y. H., McDaniels,  R. L., Jiang,  L., Yang,  B., and Klarstrom,  D. L., 2004, “Cyclic Deformation Behavior of Haynes HR-120® Superalloy under Low-cycle Fatigue Loading,” Mech. Mater., 36, pp. 85–98.
Jiang,  L., Wang,  H., Liaw,  P. K., Brooks,  C. R., Chen,  L., and Klarstrom,  D. L., 2004, “Temperature Evolution and Life Prediction in Fatigue of Superalloys,” Metall. Mater. Trans. A, 35A(3), pp. 839–848.
Wang,  H., Jiang,  L., He,  Y., Chen,  L., Liaw,  P., Seeley,  R., and Klarstrom,  D., 2002, “Infrared Imaging during Low-cycle Fatigue of HR-120 Alloy,” Metall. Trans. A, 33, pp. 1287–1292.
Jiang,  L., Wang,  H., Liaw,  P. K., Brooks,  C. R., and Klarstrom,  D. L., 2004, “Temperature Evolution during Low-Cycle Fatigue of ULTIMET Alloy: Experiment and Modeling,” Mech. Mater., 36, pp. 73–84.
Yang,  B., 2003, “Thermographic Detection of Fatigue Damage of Reactor Pressure Vessel (RPV) Steels,” J. Mater. Eng. Perform., 12(3), pp. 345–353.
Wang,  G. Y., Liaw,  P. K., Peter,  W. H., Yang,  B., Freels,  M., Yokoyama,  Y., Benson,  M. L., Green,  B. A., Saleh,  T. A., McDaniels,  R. L., Steward,  R. V., Buchanan,  R. A., Liu,  C. T., and Brooks,  C. R., 2004, “Fatigue Behavior and Fracture Morphology of Zr50A110Cu40 and Zr50A110Cu30Ni10 Bulk-Metallic Glasses,” Intermetallics, 12(10-11), pp. 1219–1227.
Yang,  B., Liaw,  P. K., Wang,  G., Morrison,  M., Liu,  C. T., Buchanan,  R. A., and Yokoyama,  Y., 2004 “In-Situ Thermographic Observation of Mechanical Damage in Bulk-Metallic Glasses During Fatigue and Tensile Experiments,” Intermetallics, 12(10-11); pp. 1265–1274.
Wang,  G. Y., Liaw,  P. K., Peter,  W. H., Yang,  B., Yokoyama,  Y., Benson,  M. L., Green,  B. A., Kirkham,  M. J., White,  S. A., Saleh,  T. A., McDaniels,  R. L., Steward,  R. V., Buchanan,  R. A., Liu,  C. T., and Brooks,  C. R., 2004, “Fatigue Behavior of Bulk-Metallic Glasses,” Intermetallics, 12(7–9), pp. 885–892.

Figures

Grahic Jump Location
(a) RPV steel cylindrical specimen geometry for high-cycle fatigue testing; (b) RPV steel plate specimen geometry for high-cycle fatigue testing
Grahic Jump Location
Temperature evolution on the gauge-length section of the cylindrical specimen of SA533B1 steel at the 25th cycle of 20 Hz fatigue testing, σmax=640 MPa
Grahic Jump Location
(a) A thermograph of the cylindrical fatigue specimen of SA533B1 steel during 20 Hz fatigue testing, σmax=650 MPa, taken at the 20th fatigue cycle; (b) Temperature evolutions at the center of the specimen as a function of stress, taken at an IR camera speed of 120 Hz.
Grahic Jump Location
Stress versus strain result of RPV steel tested at 20 Hz, σmax=640 MPa
Grahic Jump Location
Temperature evolutions at the center of the specimen as a function of stress, taken at an IR camera speed of 120 Hz
Grahic Jump Location
Experimental and calculated maximum stress levels of cylindrical specimens during 20 Hz fatigue testing, R=0.2
Grahic Jump Location
Temperature evolutions at the center of the flat specimens during 10 Hz fatigue tests with a maximum stress level of 680 MPa and an R ratio of 0.1, taken at an IR camera speed of 60 Hz
Grahic Jump Location
(a) The thermographs of the cylindrical sample at the 5th cycle of 20 Hz fatigue tests with a maximum stress level of 640 MPa and an R ratio of 0.2, taken at an IR camera speed of 120 Hz; (b) The thermographs of the flat sample at the 5th cycle of 10 Hz fatigue tests with a maximum stress level of 680 MPa and an R ratio of 0.1, taken at an IR camera speed of 60 Hz.
Grahic Jump Location
A flat specimen with two Lüders bands during 10 Hz fatigue testing with a maximum stress level of 680 MPa and an R ratio of 0.1, taken at an IR camera speed of 60 Hz
Grahic Jump Location
Conversion from the temperature map to heat-dissipation-rate (HDR) map, taken at a IR camera speed of 60 Hz
Grahic Jump Location
(a) Thermographs of Lüders-band evolution from the 5th to 30th fatigue cycles, 10 Hz, R=0.1, taken at an IR camera speed of 60 Hz; (b) Heat-dissipation-rate (HDR) maps of Lüders-band evolution from the 5th to 30th fatigue cycle, 10 Hz, R=0.1, taken at an IR camera speed of 60 Hz.
Grahic Jump Location
Measured HDR peak-position change along the specimen-gauge-length section during the Lüders-band evolution of 10 Hz fatigue tests with a maximum stress level of 680 MPa and an R ratio of 0.1
Grahic Jump Location
(a) Inelastic strain evolution of the flat specimen during the first 50 cycles of 10 Hz fatigue test at a maximum stress level of 680 MPa and an R ratio of 0.1; (b) Inelastic strain evolution of the flat specimen from the 5th to 27th cycles of 10 Hz fatigue test at a maximum stress level of 680 MPa and an R ratio of 0.1.
Grahic Jump Location
Inelastic strain evolution of the cylindrical specimen during the first 30 cycles of 20 Hz fatigue test at a maximum stress level of 640 MPa and an R ratio of 0.2

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In