0
RESEARCH PAPERS

Modeling of Creep Behavior of a Rotating Disc in the Presence of Both Composition and Thermal Gradients

[+] Author and Article Information
V. K. Gupta

Dept. of Mechanical. Engg., T.I.E.T., Patiala-147 004, India

S. B. Singh

School of Mathematics & Computer Applications, T.I.E.T., Patiala-147 004, India

H. N. Chandrawat

Amritsar College of Engg. & Tech., Amritsar, India

S. Ray

Metallurgical and Materials Engineering Dept., I.I.T., Roorkee-247 667, India

J. Eng. Mater. Technol 127(1), 97-105 (Feb 22, 2005) (9 pages) doi:10.1115/1.1839187 History: Received July 07, 2003; Revised August 22, 2004; Online February 22, 2005
Copyright © 2005 by ASME
Your Session has timed out. Please sign back in to continue.

References

Hirai, T., 1996, “Functionally Gradient Materials,” Materials Science and Technology, R. W. Chan, P. Hassen, and E. J. Cramer, eds., VCH, Weinheim, Germany, 17B , pp. 293–341.
Koizumi,  M., 1997, “FGM Activities in Japan,” Composites, Part B, 28(1), pp. 1–4.
Zhu,  J., Lai,  Z., Yin,  Z., Jeon,  J., and Lee,  S., 2001, “Fabrication of ZrO2–NiCr Functionally Graded Materials by Powder Metallurgy,” Mater. Chem. Phys., 68(1-3), pp. 130–135.
Pattnayak, D. K., Bapat, V. P., and Rama Mohan, T. R., 2001, “Techniques for the Synthesis of Functionally Graded Materials,” Proc. National Seminar on Functionally Graded Materials FGM-2001, DRDO, Ambernath, India, pp. 86–93.
Singh,  S. B., and Ray,  S., 2001, “Steady State Creep Behavior in an Isotropic Functionally Graded Material Rotating Disc of Al-SiC Composite,” Metall. Trans. A, 32(7), pp. 1679–1685.
Nieh,  T. G., 1984, “Creep Rupture of a Silicon Carbide Reinforced Aluminum Composite,” Metall. Trans. A, 15(1), pp. 139–145.
Tjong,  S. C., and Ma,  Z. Y., 2000, “Microstructural and Mechanical Characteristics of In Situ Metal Matrix Composites,” Mater. Sci. Eng., A, 29, pp. 49–113.
Mishra,  R. S., and Pandey,  A. B., 1990, “Some Observations on the High-Temperature Creep Behavior of 6061 Al-SiC Composites,” Metall. Trans. A, 21(7), pp. 2089–2090.
Park,  K. T., Lavernia,  E. J., and Mohamed,  F. A., 1990, “High Temperature Creep of Silicon Carbide Particulate Reinforced Aluminum,” Acta Metall. Mater., 38(11), pp. 2149–2159.
Pandey,  A. B., Mishra,  R. S., and Mahajan,  Y. R., 1992, “Steady State Creep Behavior of Silicon Carbide Particulate Reinforced Aluminum Composites,” Acta Metall. Mater., 40(8), pp. 2045–2052.
Mohamed,  F. A., Park,  K. T., and Lavernia,  E. J., 1992, “Creep Behavior of Discontinuous SiC–Al Composites,” Mater. Sci. Eng., A, 150, pp. 21–35.
Ma,  Z. Y., and Tjong,  S. C., 2001, “Creep Deformation Characteristics of Discontinuously Reinforced Aluminum-Matrix Composites,” Compos. Sci. Technol., 61, pp. 771–786.
Pandey,  A. B., Mishra,  R. S., and Mahajan,  Y. R., 1994, “High-Temperature Creep of Al-TiB2 Particulate Composites,” Mater. Sci. Eng., A, 189, pp. 95–104.
Gonzalez-Doncel,  G., and Sherby,  O. D., 1993, “High Temperature Creep Behavior of Metal Matrix Aluminum-SiC Composites,” Acta Metall. Mater., 41, pp. 2797–2805.
Park,  K. T., and Mohamed,  F. A., 1995, “Creep Strengthening in a Discontinuous SiC–Al Composite,” Metall. Trans. A, 26, pp. 3119–3129.
Cadek,  J., Oikawa,  H., and Sustek,  V., 1995, “Threshold Creep Behavior of Discontinuous Aluminum and Aluminum Alloy Matrix Composites: An Overview,” Mater. Sci. Eng., A, 190, pp. 9–23.
Li,  Y., and Mohamed,  F. A., 1997, “An Investigation of Creep Behavior in an SiC-2124 Al Composite,” Acta Mater., 45(11), pp. 4775–4785.
Li,  Y., and Langdon,  T. G., 1997, “Creep Behavior of an Al-6061 Metal Matrix Composite Reinforced with Alumina Particulates,” Acta Mater., 45(11), pp. 4797–4806.
Cadek,  J., Zhu,  S. J., and Milicka,  K., 1998, “Creep Behavior of ODS Aluminum Reinforced by Silicon Carbide Particulates: ODS Al–30SiCp Composite,” Mater. Sci. Eng., A, 248, pp. 65–72.
Li,  Y., and Langdon,  T. G., 1999, “An Examination of a Substructure-Invariant Model for the Creep of Metal Matrix Composites,” Mater. Sci. Eng., A, 265, pp. 276–284.
Ma,  Z. Y., and Tjong,  S. C., 1999, “The High-Temperature Creep Behavior of 2124 Aluminum Alloys with and without Particulate and SiC Whisker Reinforcement” Compos. Sci. Technol., 59, pp. 737–747.
Tjong,  S. C., and Ma,  Z. Y., 1999, “High-Temperature Creep Behavior of Powder-Metallurgy Aluminum Composites Reinforced with SiC Particles of Various Sizes,” Compos. Sci. Technol., 59, pp. 1117–1125.
Ma,  Z. Y., and Tjong,  S. C., 2000, “High-Temperature Creep Behavior of SiC Particulate Reinforced Al–Fe–V–Si Alloy Composite,” Mater. Sci. Eng., A, 278, pp. 5–15.
Sherby,  O. D., Klundt,  R. H., and Miller,  A. K., 1977, “Flow Stress, Subgrain Size, and Subgrain Stability at Elevated Temperature,” Metall. Trans. A, 8(6), pp. 843–850.
Metals Handbook (Vol. 2), 9th Ed., 1978, American Society for Metals, Metals Park, Ohio, USA, p. 714.
Clyne, T. W., and Withers, P. J., 1993, An Introduction To Metal Matrix Composites, Cambridge Univ. Press, Cambridge, UK, p. 479.
Holman, J. P., 1992, Heat Transfer, McGraw-Hill Book Company, London, p. 541, Chap. 10.
Taya, M., and Arsenault, R. J., 1989, Metal Matrix Composites: Thermomechanical Behavior, Pergamon Press, Oxford, UK, p. 248.
von Mises, R., 1986, Technical Memorandum 88488, NASA, Washington DC, translation of Mechanik der festen koerper im plastisch-deformablem Zustrand, Nachrichten von der Königlichen Gasellschaft der Wissenschaften, pp. 582–592.
Singh,  S. B., and Ray,  S., 2002, “Modeling the Anisotropy and Creep in Orthotropic Aluminum-Silicon Carbide Composite Rotating Disc,” Mech. Mater., 34(6), pp. 363–372.
Wahl,  A. M., Sankey,  G. O., Manjoine,  M. J., and Shoemaker,  E. J., 1954, “Creep Tests of Rotating Discs at Elevated Temperature and Comparison with Theory,” J. Appl. Mech., 21(3), pp. 225–235.

Figures

Grahic Jump Location
Numerical Scheme of computation
Grahic Jump Location
Variation of particle content in composite discs
Grahic Jump Location
Variation of temperature in composite discs
Grahic Jump Location
Variation of creep parameters in non-FGM and FGM composite discs
Grahic Jump Location
Comparison of theoretical and experimental strains in a rotating steel disc
Grahic Jump Location
Comparison of creep behavior of FGM disc (Disc-1) using (i) Sherby’s creep law and (ii) Norton’s creep law
Grahic Jump Location
Effect of (i) thermal gradient (ii) particle gradient and (iii) thermal and particle gradient together, on creep behavior of composite disc
Grahic Jump Location
Variation of highest (maximum) and lowest tangential stress in composite disc
Grahic Jump Location
Variation of maximum radial stress in composite disc
Grahic Jump Location
Variation of stress inhomogenity in composite disc
Grahic Jump Location
Variation of highest and lowest tangential strain rate in composite disc
Grahic Jump Location
Variation of highest and lowest radial strain rate in composite disc
Grahic Jump Location
Variation of strain rate inhomogenity in composite disc

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In