0
Article

Mesodamage Evolution in Polycrystals

[+] Author and Article Information
M. Chadli, A. Abdul-Latif

L3M, IUT de Tremblay, 93290 Tremblay-en-France, France

J. Eng. Mater. Technol 127(2), 214-221 (Apr 06, 2005) (8 pages) doi:10.1115/1.1857939 History: Received June 24, 2004; Revised November 20, 2004; Online April 06, 2005
Copyright © 2005 by ASME
Your Session has timed out. Please sign back in to continue.

References

Neumann, P., 1983, “Fatigue,” in Physical Metallurgy, R. W. Cahn and P. Haasen, eds., Elsevier, Amsterdam.
Pineau, A., 1979, “Sollicitation Cyclique des Alliages Durcis par Précipitation, Dislocations et Déformation Plastique,” Yravals, Les Editions de Physique, pp. 383–393.
Chaboche,  J. L., 1977, “Viscoplastic Constitutive Equations for Description of Cyclic and Anisotropic Behavior of Metals,” Bull. Acad. Pol. Sci., Ser. Sci. Tech., 25, pp. 33–42.
Krajcinovic,  D., and Fonseka,  G. U., 1981, “The Continuous Damage Mechanics of Brittle Materials, Part I and II,” ASME J. Appl. Mech., 48, pp. 809–824.
Cordebois, J. P., and Sidoroff, F., 1979, “Damage Induced Elastic Anisotropy,” Colloque Euromech 115, Villard de Lans, France.
Lemai⁁tre, J., and Chaboche, J. L., 1985, “Mécanique des Matériaux Solides,” Dunod, Bordas, Paris.
Simo,  J. C., and Ju,  J. W., 1987, “Strain- and Stress-Based Continuum Damage Models—Part I and II,” Int. J. Solids Struct., 23, pp. 821–841.
Ju,  J. W., 1989, “On Energy-Based Coupled Elastoplastic Damage Theories: Constitutive Modeling and Computational Aspects,” Int. J. Solids Struct., 25, p. 803.
Chaboche,  J. L., 1993, “Development of Continuum Damage Mechanics for Elastic Solids Sustaining Anisotropic and Unilateral Damage,” Int. J. Damage Mech., 3, p. 311.
Chow,  C. L., and Wei,  Y., 1999, “Constitutive Modeling of Material Damage for Fatigue Failure Prediction,” Int. J. Damage Mech., 8, pp. 355–375.
Abdul-Latif,  A., and Saanouni,  K., 1994, “Damaged Anelastic Behavior of FCC Poly-Crystalline Metals With Micromechanical Approach,” Int. J. Damage Mech., 3, p. 237.
Saanouni,  K., and Abdul-Latif,  A., 1996, “Micromechanical Modeling of Low Cycle Fatigue Under Complex Loadings—Part I: Theoretical Formulation,” Int. J. Plast., 12, p. 1111.
Abdul-Latif,  A., and Saanouni,  K., 1996, “Micromechanical Modeling of Low Cycle Fatigue Under Complex Loadings—Part II: Applications,” Int. J. Plast., 12, p. 1123.
Abdul-Latif,  A., and Saanouni,  K., 1997, “Effect of Some Parameters on the Plastic Fatigue Behavior With Micromechanical Approach,” Int. J. Damage Mech., 6, p. 433.
Abdul-Latif,  A., Ferney,  V., and Saanouni,  K., 1999, “Fatigue Damage of Waspaloy Under Complex Loading,” ASME J. Eng. Mater. Technol., 121, p. 278.
Saanouni,  K., Forster,  Ch., and Benhatira,  F., 1994, “On the Anelastic Flow With Damage,” Int. J. Damage Mech., 3, p. 140.
Franciosi, P., 1978, “Plasticité à froid des monocristaux C.F.C.: Etude du Durcissement Latent,” Thèse d’état, Univ. of Paris XIII.
Poubanne, P., Nouailhas, D., and Cailletaud, G., 1988, “Modeling of Viscoplastic Anisotropic Behavior of Single Crystals,” Proc. Mecamat on Inelastic Behavior of Solids: Modeling and Utilization, Besançon, France, 30 August–1 September.
Berveiller,  M., and Zaoui,  A., 1979, “An Extension of the Self-Consistent Scheme to Plasticity Flowing Polycrystals,” J. Mech. Phys. Solids, 26, p. 325.
Pilvin, P., 1990, “Approches Multiéchelles pour la Prévision du Comportement Anélastique des Métaux,” Thèse de Doctorat, Univ. Paris VI.
Abdul-Latif,  A., 2004, “Pertinence of the Grains Aggregate Type on the Self-Consistent Model Response,” Int. J. Solids Struct., 41, pp. 305–322.
Ferney, V., 1994, “Etude de l’Ecrouissage Cyclique sous Sollicitations Complexes,” Thèse de Doctorat de l’Université de Technologie de Compiègne.
Abdul-Latif,  A., 2004, “A Comparison of Two Self-Consistent Models to Predict the Cyclic Behavior of Polycrystals,” ASME J. Eng. Mater. Technol., 126, pp. 62–69.
Abdul-Latif,  A., Clavel,  M., Ferney,  V., and Saanouni,  K., 1994, “On the Modeling of Non-Proportional Cyclic Plasticity of Waspaloy,” ASME J. Eng. Mater. Technol., 116, pp. 35–44.

Figures

Grahic Jump Location
Comparison between the model response and the experimental results for the OA state of Waspaloy (stabilized cycle) under: (a) TC; (b) TT90
Grahic Jump Location
Predicted Manson-Coffin diagram
Grahic Jump Location
Predicted evolutions of the maximum granular stress and mesodamage in TC up to the final granular damaging (grain No. 18)
Grahic Jump Location
Predicted granular elastic energy evolution during TC up to final damaging of a selected grain (grain No. 18)
Grahic Jump Location
Predicted overall elastic energy evolution during TC up to final damaging of the polycrystal
Grahic Jump Location
Predicted evolution of the overall maximum equivalent von Mises stress up to the final damaging of the polycrystal under different loading paths
Grahic Jump Location
Influence of the out-of-phase angle on the fatigue life, overall maximum stress, and number of plastified slip systems
Grahic Jump Location
Prediction of the granular distributions of the (a) elastic and (b) inelastic energies within 400-grain aggregate under TT00 and TT90 loading paths
Grahic Jump Location
Predicted evolutions of all the intragranular isotropic hardenings for a given grain up to its the final damaging under TT30

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In