Multiscale Model to Study the Effect of Interfaces in Carbon Nanotube-Based Composites

[+] Author and Article Information
S. Namilae, N. Chandra

Department of Mechanical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32301

J. Eng. Mater. Technol 127(2), 222-232 (Apr 06, 2005) (11 pages) doi:10.1115/1.1857940 History: Received June 29, 2004; Revised October 11, 2004; Online April 06, 2005
Copyright © 2005 by ASME
Your Session has timed out. Please sign back in to continue.


Treacy,  M. M. J., Ebbesen,  T. W., and Gibbson,  J. M., 1996, “Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes,” Nature (London), 381, pp. 678–680.
Robertson,  D. H., Brenner,  D. W., and Mintmire,  J. W., 1992, “Energetics of Nanoscale Graphitic Tubules,” Phys. Rev. B, 45, p. 12592.
1987, Engineered Materials Handbook, ASM International, Metals Park, OH, Vol. 1, Composites.
Demczyk,  B. G., Wang,  Y. M., Cumings,  J., Hetman,  M., Han,  W., Zettl,  A., and Ritchie,  R. O., 2002, “Direct Mechanical Measurement of the Tensile Strength and Elastic Modulus of Multiwalled Carbon Nanotubes,” Mater. Sci. Eng., A, 334, pp. 173–178.
Yakobson,  B. I., Brabec,  C. J., and Bernholc,  J., 1996, “Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response,” Phys. Rev. Lett., 76, pp. 2511–2515.
Belytschko,  T., Xiao,  S. P., Schatz,  G. C., and Ruoff,  R. S., 2002, “Atomistic Simulations of Nanotube Fracture,” Phys. Rev. B, 65, p. 235430.
Pan,  Z. W., Xie,  S. S., Lu,  L., Chang,  B. H., Sun,  L. F., Zhou,  W. Y., Wang,  G., and Zhang,  D. L., 1999, “Tensile Tests of Ropes of Very Long Aligned Multiwalled Carbon Nanotubes,” Appl. Phys. Lett., 74(21), pp. 3152–3155.
Qian,  D., Dickey,  E. C., Andrews,  R., and Rantell,  T., 2000, “Load Transfer and Deformation Mechanisms in Carbon Nanotube-Polystyrene Composites,” Appl. Phys. Lett., 76, pp. 2868–2871.
Wang,  Q. H., Setlur,  A. A., Lauerhaas,  J. M., Dai,  J. Y., Seelig,  E. W., and Chang,  R. P. H., 1998, “A Nanotube-Based Field-Emission Flat Panel Display,” Appl. Phys. Lett., 72, pp. 2912–2194.
Jia,  Z., Wang,  Z., Xu,  C., Liang,  J., Wei,  B., Wu,  D., and Zhu,  S., 1999, “Study on Poly(methly methacrylate)Carbon Nanotube Composites,” Mater. Sci. Eng., A, 271, pp. 395–400.
Wagner,  H. D., Lourie,  O., Feldman,  Y., and Tenne,  R., 1998, “Stress-Induced Fragmentation of Multiwall Carbon Nanotubes in a Polymer Matrix,” Appl. Phys. Lett., 72, pp. 188–190.
Andrews,  R., Jacques,  D., Minot,  M., and Rantell,  T., 2002, “Fabrication of Carbon Multiwalled Nanotube/Polymer Composites by Shear Mixing,” Macromol. Mater. Eng.,287, pp. 395–403.
Ajayan,  M. P., Stephan,  O., Colliex,  C., and Trauth,  D., 1994, “Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin-Nanotube Composite,” Science, 265, pp. 1212–1214.
McCarthy,  B., Coleman,  J. N., Czerw,  R., Dalton,  A. B., Caroll,  D. L., and Blau,  W. J., 2001, “Microscopic Study of Nanotube-Conjugated Polymer Interactions,” Synth. Met., 121, pp. 1225–1229.
Dong,  S. R., Tu,  J. P., and Zhang,  X. B., 2001, “An Investigation of the Sliding Wear Behavior of Cu-Matrix Composite Reinforced by Carbon Nanotubes,” Mater. Sci. Eng., A, 313, pp. 83–87.
Kuzumaki,  T., Miyazawa,  K., Ichinose,  H., and Ito,  K., 1998, “Processing of Carbon Nanotube Reinforced Aluminum Composite,” J. Mater. Res., 13, pp. 2445–2449.
Kuzumaki,  T., Ujiie,  O., Ichinose,  H., and Ito,  K., 2000, “Mechanical Characteristics and Preparation of Carbon Nanotube Fiber-Reinforced Ti Composite,” Adv. Eng. Mater.,2, pp. 416–418.
Ning,  J., Zhang,  J., Pan,  Y., and Guo,  J., 2003, “Fabrication and Mechanical Properties of SiO2 Matrix Composites Reinforced by Carbon Nanotube,” Mater. Sci. Eng., A, 357, pp. 392–396.
Kamalakaran,  R., Lupo,  F., Grobert,  N., Lozano-Castello,  D., Jin-Phillipp,  N. Y., and Ruhle,  M., 2003, “In-Situ Formation of Carbon Nanotubes in an Alumina-Nanotube Composite by Spray Pyrolysis,” Carbon, 41, pp. 2737–2740.
Cooper,  C. A., Young,  R. J., and Halsall,  M., 2001, “Investigation Into the Deformation of Carbon Nanotubes and Their Composites Through the Use of Raman Spectroscopy,” Composites, Part A, 32, pp. 401–411.
Wood,  J. R., Zhao,  Q., and Wagner,  H. D., 2001, “Orientation of Carbon Nanotubes in Polymers and Its Detection by Raman Spectroscopy,” Composites, Part A, 32, pp. 391–399.
Cooper,  C. A., Cohen,  S. R., Barber,  A. H., and Wagner,  H. D., 2002, “Detachment of Nanotubes From a Polymer Matrix,” Appl. Phys. Lett., 81, pp. 3873–3875.
Schadler,  L. S., Giannaris,  S. C., and Ajayan,  P. M., 1998, “Load Transfer in Carbon Nanotube Epoxy Composites,” Appl. Phys. Lett., 73(26), pp. 3842–3844.
Ajayan,  P. M., Schadler,  L. S., Giannaris,  C., and Rubio,  A., 2000, “Single-Walled Carbon Nanotube-Polymer Composites: Strength and Weakness,” Adv. Mater. (Weinheim, Ger.), 12, pp. 750–753.
Namilae, S., 2004, Ph.D. Dissertation, Florida State University.
Tadmor,  E. B., Philips,  R., and Ortiz,  M., 1996, “Quasicontinuum Analysis of Defects in Solids,” Philos. Mag. A, 73, pp. 1529–1563.
Rudd,  R. E., and Broughton,  J. Q., 2000, “Concurrent Coupling of Length Scales in Solid State Systems,” Phys. Status Solidi B, 217, pp. 251–291.
Lidorikis,  E., Bachlechner,  M. E., Kalia,  R. K., Nakano,  A., Vashishta,  P., and Voyiadjis,  G. J., 2001, “Coupling Length Scales for Multiscale Atomistics-Continuum Simulations: Atomistically Induced Stress Distributions in Si/Si3N4 Nanopixels,” Phys. Rev. Lett., 87, p. 086104.
Qian,  D., Liu,  W. K., and Ruoff,  R. S., 2001, “Mechanics of C60 in Nanotubes,” J. Phys. Chem. B, 105, p. 10753.
Li,  C. Y., and Chou,  T. W., 2003, “A Structural Mechanics Approach for the Analysis of Carbon Nanotubes,” Int. J. Solids Struct., 40, pp. 2487–2499.
Thostenson,  E. T., and Chou,  T. W., 2003, “On the Elastic Properties of Carbon Nanotube-Based Composites: Modeling and Characterization,” J. Phys. D, 36, pp. 573–582.
Fisher,  F. T., Bradshaw,  R. D., and Brinson,  L. C., 2002, “Effects of Nanotube Waviness on the Modulus of Nanotube-Reinforced Polymers,” Appl. Phys. Lett., 80, pp. 4647–4649.
Ananth,  C. R., and Chandra,  N., 1995, “Numerical Modeling of Fiber Pushout Testing Metallic Ceramic and Intermetallic Matrix Composites—Mechanics of the Failure Processes,” J. Compos. Mater., 29, pp. 1488–1514.
Mukherjee,  S., Ananth,  C. R., and Chandra,  N., 1997, “Effect of Residual Stresses on the Interfacial Fracture Behavior of Metal-Matrix Composites,” Compos. Sci. Technol., 57, pp. 1501–1512.
Chandra,  N., and Ananth,  C. R., 1995, “Analysis of Interfacial Behavior in MMCS and IMCS Using Thin-Slice Push-Out Tests,” Compos. Sci. Technol., 54, pp. 87–100.
Carman,  G. P., Averill,  R. C., Reifsnider,  K. L., and Reddy,  J. N., 1993, “Optimization of Fiber Coatings to Minimize Stress-Concentrations in Composite-Materials,” J. Compos. Mater., 27, pp. 589–597.
Chandra,  N., Li,  H., Shet,  C., and Ghonem,  H., 2002, “Some Issues in the Application of Cohesive Zone Models for Metal Ceramic Interfaces,” Int. J. Solids Struct., 39, pp. 2827–2855.
Shet,  C., and Chandra,  N., 2002, “Analysis of Energy Balance When Using Cohesive Zone Models to Simulate Fracture Processes,” ASME J. Eng. Mater. Technol., 124, pp. 440–450.
Mukherjee,  S., Ananth,  C. R., and Chandra,  N., 1997, “Evaluation of Fracture Toughness of MMC Interfaces Using This-Slice Push Out Tests,” Scr. Mater., 36, pp. 1333–1339.
Barrenblatt,  G. I., 1959, “The Formation of Equilibrium Cracks in Brittle Fracture: General Ideas and Hypothesis, Axially-Smmetric Cracks,” Prikl. Mat. Mekh., 23, pp. 434–441.
Dugdale,  D. S., 1959, “Yielding of Steel Sheets Containing Silts,” J. Mech. Phys. Solids, 8, pp. 100–104.
Hillerborg,  A., Modeer,  M., and Petersson,  P. E., 1976, “Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements,” Cem. Concr. Res., 6, pp. 773–777.
Chandra,  N., Namilae,  S., and Shet,  C., 2004, “Local Elastic Properties of Carbon Nanotubes in the Presence of Stone-Wales Defects,” Phys. Rev. B, 69, p. 094101.
Frankland,  S. J. V., Caglar,  A., Brenner,  D. W., and Griebel,  M., 2002, “Molecular Simulation of the Influence of Chemical Cross-Links on the Shear Strength of Carbon Nanotube-Polymer Interfaces,” J. Phys. Chem. B, 106, pp. 3046–3048.
Lourie,  O., and Wagner,  H., 1999, “Evidence of Stress Transfer and Formation of Fracture Clusters in Carbon Nanotube-Based Composites,” Compos. Sci. Technol., 59, pp. 975–977.
Sun,  Y. P., Fu,  K., Lin,  Y., and Huang,  W., 2002, “Functionalized Carbon Nanotubes: Properties and Applications,” Acc. Chem. Res., 35, pp. 1096–1102.
Eitan,  A., Jiang,  K., Dukes,  D., Andrews,  R., and Schadler,  L. S., 2003, “Surface Modification of Multiwalled Carbon Nanotubes: Toward the Tailoring of the Interface in Polymer Composites,” Chem. Mater., 15, pp. 3198–3201.
Namilae,  S., Chandra,  N., and Shet,  C., 2004, “Mechanical Behavior of Functionalized Nanotubes,” Chem. Phys. Lett., 387, pp. 247–252.
Lordi,  V., and Yao,  N., 2000, “Molecular Mechanics of Binding in Carbon-Nanotube-Polymer Composites,” J. Mater. Res., 15, pp. 2770–2773.
Liao,  K., and Li,  S., 2001, “Interfacial Characteristics of a Carbon Nanotube-Polystyrene Composite System,” Appl. Phys. Lett., 79, pp. 4225–4227.
Brenner,  D. W., 1991, “Emperical Potential for Hydrocarbon for Use in Simulating the Chemical Vapor Deposition of Diamond Films,” Phys. Rev. B, 42, 9458–9471.
Williams,  E. R., Jones,  G. C., Fang,  L., Zare,  R. N., Garrison,  B. J., and Brenner,  D. W., 1992, “Ion Pickup of Large, Surface-Adsorbed Molecules—A Demonstration of the Eley—Rideal Mechanism,” J. Am. Chem. Soc., 114, pp. 3207–3210.
Zhang,  L., and Tanaka,  H., 1997, “Towards a Deeper Understanding of Wear and Friction on the Atomic Scale—A Molecular Dynamics Analysis,” Wear, 211, pp. 44–53.
Buldum,  A., and Lu,  J. P., 2003, “Modeling and Simulations of Carbon Nanotubes and Their Junctions on Surfaces,” Appl. Surf. Sci., 219, pp. 123–128.
Wagner,  H. D., Aronhime,  J., and Marom,  G., 1990, Proc. R. Soc. London, Ser. A, 428, pp. 493–500.
ABAQUS , 2003 Manual, Version 6.3, Habbit, Karlsson & Sorensen Inc. USA.


Grahic Jump Location
Illustration of the cohesive zone model for interfaces
Grahic Jump Location
Atomic description of an interface
Grahic Jump Location
Schematic of the boundary conditions applied in the pullout test simulation
Grahic Jump Location
Reaction force versus displacement for a typical hydrocarbon attachment
Grahic Jump Location
Variation of the reaction force along the length of a (10,10) CNT with 85 chemical attachments at different simulation times
Grahic Jump Location
Schematic showing the variation of reaction force with time evolution
Grahic Jump Location
Traction-displacement plots obtained from atomic simulation are shown in (a) and (b). These are extrapolated to obtain the cohesive zone traction-displacement relations as in (c) and (d).
Grahic Jump Location
Typical mesh used in the finite element simulations
Grahic Jump Location
Variation of composite Young’s modulus with volume % CNT for different interfacial strengths
Grahic Jump Location
Variation of composite Young’s modulus with fiber stiffness for different interfacial strengths
Grahic Jump Location
Variation of composite Young’s modulus with matrix stiffness for different interfacial strengths




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In