Schwartz, Mel M., 1996, "*Composite Materials Volume I*", Prentice–Hall PTR, Upper Saddle River, New Jersey.

Clyne, T. W., and Withers, P. J., 1993, "*An Introduction to Metal Matrix Composites*", Cambridge University Press, Cambridge.

Suresh, S., Mortensen, A., and Needleman, A., 1993, "*Fundamentals of Metal-Matrix Composites*", Butterworth-Heinemann, London.

Llorca, J., Martin, A., Ruiz, J., and Elices, 1993, “Particulate Fracture During Deformation of a Spray Formed Metal-Matrix Composite,” Metall. Trans. A, 24A , pp. 1575–1588.

Zhao, Y. H., and Weng, G. J., 1996, “Plasticity of a Two-Phase Composite With Partially Debonded Inclusions,” Int. J. Plast.

[CrossRef], 12 , pp. 781–804.

Zhao, Y. H., and Weng, G. J., 1997, “Transversely Isotropic Moduli of Two Partially Debonded Composites,” Int. J. Solids Struct.

[CrossRef], 34 , pp. 493–507.

Zhao, Y. H., and Weng, G. J., 2002, “The Effect of Debonding Angle on the Reduction of Effective Moduli of Particle and Fiber-Reinforced Composites,” J. Appl. Mech.

[CrossRef], 69 , pp. 292–302.

Sun, L. Z., Ju, J. W., and Liu, H. T., 2003, “Elastoplastic Modeling of Metal Matrix Composites With Evolutionary Particle Debonding,” Mech. Mater., 35 , pp. 559–569.

Sun, L. Z., Liu, H. T., and Ju, J. W., 2003, “Effect of Particle Cracking on Elastoplastic Behaviour of Metal Matrix Composites,” Int. J. Numer. Methods Eng., 56 (14), pp. 2183–2198.

Liu, H. T., Sun, L. Z., and Ju, J. W., 2004, “An Interfacial Debonding Model for Particle-Reinforced Composites,” Int. J. Damage Mech., 14 , pp. 163–185.

Derrien, K., Fitoussi, J., Guo, G., and Baptiste, D., 2000, “Prediction of the Effective Damage Properties and Failure Properties of Nonlinear Anisotropic Discontinuous Reinforced Composites,” Comput. Methods Appl. Mech. Eng., 185 , pp. 93–107.

Brechet, Y., Embury, J. D., Tao, S., and Luo, L., 1991, “Damage Initiation in Metal Matrix Composites,” Acta Metall. Mater., 39 , pp. 1781–1786.

Caceres, C. H., and Griffiths, J. R., 1996, “Damage by the Cracking of Silicon Particles in an Al–7Si–0.4Mg Casting Alloy,” Acta Mater., 44 (1), pp. 25–33.

Li, M., Ghosh, S., Richmond, O., Weiland, H., and Rouns, T. N., 1999, “Three-Dimensional Characterization and Modeling of Particle Reinforced Metal Matrix Composites Part II: Damage Characterization,” Mater. Sci. Eng., A, 266 , pp. 221–240.

Weibull, W., 1951, “A Statistical Distribution Function of Wide Applicability,” J. Appl. Mech., 18 , pp. 293–297.

Llorca, J., Martinez, J. L., and Elices, M., 1997, “Reinforcement Fracture and Tensile Ductility in Sphere-Reinforced Metal-Matrix Composites,” Fatigue Fract. Eng. Mater. Struct., 20 (5), pp. 689–702.

Wilkinson, D. S., Maire, E., and Embury, J. D., 1997, “The Role of Heterogeneity on the Flow and Fracture of Two-Phase Materials,” Mater. Sci. Eng., A

[CrossRef], 233 , pp. 145–154.

Gonzalez, C., and Llorca, J., 2000, “A Self-Consistent Approach to the Elasto-Plastic Behaviour of Two-Phase Materials Including Damage,” J. Mech. Phys. Solids

[CrossRef], 48 , pp. 675–692.

Segurado, J., Gonzalez, C., and Llorca, J., 2003, “A Numerical Investigation of the Effect of Particle Clustering on the Mechanical Properties of Composites,” Acta Mater.

[CrossRef], 51 , pp. 2355–2369.

Eckschlager, A., Han, W., and Bohm, H. J., 2002, “A Unit Cell Model for Brittle Fracture of Particles Embedded in a Ductile Matrix,” Comput. Mater. Sci.

[CrossRef], 25 , pp. 85–91.

Lewis, C. A., and Withers, P. J., 1995, “Weibull Modeling of Particle Cracking in Metal Matrix Composites,” Acta Metall. Mater., 43 (10), pp. 3685–3699.

Lee, K., Moorthy, S., and Ghosh, S., 1999, “Multiple Scale Computational Model for Damage in Composite Materials,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 172 , pp. 175–201.

Wu, H. C., Chang, K. J., and Schwarz, J., 1976, “Fracture in the Compression of Columnar Gained Ice,” Eng. Fract. Mech., 8 , pp. 365–372.

Wu, H. C., and Chang, K. J., 1978, “Angled Elliptic Notch Problem in Compression and Tension,” J. Appl. Mech., 45 (2), pp. 258–262.

Eshelby, J. D., 1957, “The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems,” Proc. R. Soc. London, Ser. A, 241 , pp. 376–396.

Eshelby, J. D., 1959, “The Elastic Field Outside an Ellipsoidal Inclusion,” Proc. R. Soc. London, Ser. A, 252 , pp. 561–569.

Mura, T., 1987, "*Micromechanics of Defects in Solids*", 2nd ed., Kluwer Academic, Dordrecht.

Ju, J. W., and Sun, L. Z., 2001, “Effective Elastoplastic Behavior of Metal Matrix Composites Containing Randomly Located Aligned Spheroidal Inhomogeneities, Part I: Micromechanics-Based Formulation,” Int. J. Solids Struct., 38 , pp. 183–201.

Hori, M., and Nemat-Nasser, S., 1993, “Double-Inclusion Model and Overall Moduli of Multi-Phase Composites,” Mech. Mater.

[CrossRef], 14 , pp. 189–206.

Shodja, H. M., and Sarvestani, A. S., 2001, “Elastic Fields in Double Inhomogeneity by the Equivalent Inclusion Method,” ASME J. Appl. Mech.

[CrossRef], 68 (1), pp. 3–10.