Tadmor, E. B., Ortiz, M., and Philips, R., 1996, “Quasicontinuum Analysis of Defects in Solids,” Philos. Mag. A73 , pp. 1529–1563.

Tadmor, E. B., Philips, R., and Ortiz, M., 1996, “Mixed Atomistic and Continuum Models of Deformation in Solids,” Langmuir

[CrossRef]12 , pp. 4529–4534.

Tadmor, E. B., Smith, G. S., Bernstein, N., and Kaxiras, E., 1999, “Mixed Finite Element and Atomistic Formulation for Complex Crystals,” Phys. Rev. B

[CrossRef]59 , pp. 235–245.

Miller, R., Ortiz, M., Phillips, R., Shenoy, V., and Tadmor, E. B., 1998, “Quasicontinuum Models of Fracture and Plasticity,” Eng. Fract. Mech.

[CrossRef], 61 , pp. 427–444.

Miller, R., Tadmor, E. B., Phillips, R., and Ortiz, M., 1998, “Quasicontinuum Simulation of Fracture at the Atomic Scale,” Modell. Simul. Mater. Sci. Eng.

[CrossRef], 6 , pp. 607–638.

Shenoy, V. B., Miller, R., Tadmor, E. B., Phillips, R., and Ortiz, M., 1998, “Quasicontinuum Models of Interfacial Structure and Deformation,” Phys. Rev. Lett.

[CrossRef]80 , pp. 742–745.

Shenoy, V. B., Miller, R., Tadmor, E. B., Rodney, D., Phillips, R., and Ortiz, M., 1999, “An Adaptive Finite Element Approach to Atomic-Scale Mechanics—The Quasicontinuum Method,” J. Mech. Phys. Solids

[CrossRef]47 , pp. 611–642.

Shilkrot, L. E., Curtin, W. A., and Miller, R. E., 2002, “A Coupled Atomistic∕Continuum Model of Defects in Solids,” J. Mech. Phys. Solids50 , pp. 2085–2106.

Curtin, W. A., and Miller, R. E., 2003, “Atomistic∕Continuum Coupling in Computational Materials Science,” Modell. Simul. Mater. Sci. Eng.

[CrossRef], 11 , pp. R33–R68.

Gao, H., and Klein, P. A., 1998, “Numerical Simulation of Crack Growth in an Isotropic Solid with Randomized Internal Cohesive Bonds,” J. Mech. Phys. Solids

[CrossRef]46 , pp. 187–218.

Klein, P. A., and Gao, H., 1998, “Crack Nucleation and Growth as Strain Localization in a Virtual-Bond Continuum,” Eng. Fract. Mech.

[CrossRef], 61 , pp. 21–48.

Klein, P. A., and Gao, H., 2000, “Study of Crack Dynamics Using the Virtual Internal Bond Method,” "*Multiscale Deformation and Fracture in Materials and Structures, James R. Rice’s 60th Anniversary Volume*", Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 275–309.

Zhang, P., Klein, P., Huang, Y., Gao, H., and Wu, P. D., 2002, “Numerical Simulation of Cohesive Fracture by the Virtual-Internal-Bond Model,” Comput. Model. Eng. Sci., 3 pp. 263–277.

Thiagarajan, G., Hsia, K. J., and Huang, Y., 2004, “Finite Element Implementation of Virtual Intenal Bond Model for Crack Behavior Simulation,” Eng. Fract. Mech., 71 , pp. 401–423.

Thiagarajan, G., Huang, Y., and Hsia, K. J., 2004, “Fracture Simulation Using an Elasto-Viscoplastic Vistual Intenal Bond Model with Finite Elements,” J. Appl. Phys.

[CrossRef]71 , pp. 796–804.

Friesecke, G., and James, R. D., 2000, “A Scheme for the Passage from Atomic to Continuum Theory for Thin Films, Nanotubes and Nanorods,” J. Mech. Phys. Solids

[CrossRef]48 , pp. 1519–1540.

Arroyo, M., and Belytschko, T., 2002, “An Atomistic-Based Finite Deformation Membrane for Single Layer Crystalline Films,” J. Mech. Phys. Solids

[CrossRef]50 , pp. 1941–1977.

Zhang, P., Huang, Y., Gao, H., and Hwang, K. C., 2002, “Fracture Nucleation in Single-Wall Carbon Nanotubes Under Tension: A Continuum Analysis Incorporating Interatomic Potentials,” ASME J. Appl. Mech.

[CrossRef]69 , pp. 454–458.

Zhang, P., Huang, Y., Geubelle, P. H., and Hwang, K. C., 2002, “On the Continuum Modeling of Carbon Nanotubes,” Acta Mech. Sin.18 , pp. 528–536.

Zhang, P., Huang, Y., Geubelle, P. H., Klein, P. A., and Hwang, K. C., 2002, “The Elastic Modulus of Single-Wall Carbon Nanotubes: A Continuum Analysis Incorporating Interatomic Potentials,” Int. J. Solids Struct.

[CrossRef], 39 , pp. 3893–3906.

Zhang, P., Jiang, H., Huang, Y., Geubelle, P., and Hwang, K., 2004, “An Atomistic-Based Continuum Theory for Carbon Nanotubes: Analysis of Fracture Nucleation,” J. Mech. Phys. Solids52 , pp. 977–998.

Jiang, H., Zhang, P., Liu, B., Huang, Y., Geubelle, P. H., Gao, H., and Hwang, K. C., 2003, “The Effect of Nanotube Radius on the Constitutive Model for Carbon Nanotubes,” Comput. Mater. Sci.

[CrossRef], 28 , pp. 429–442.

Shenoy, V., Shenoy, V., and Phillips, R., 1999, “Finite Temperature Quasicontinuum Methods,” Mater. Res. Soc. Symp. Proc.538 , pp. 465–471.

Weiner, J. H., "*Statistical Mechanics of Elasticity*" (Wiley, New York, 1983).

Brenner, D. W., 1990, “Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films,” Phys. Rev. B

[CrossRef]42 , pp. 9458–9471.

Brenner, D. W., Shenderova, O. A., Harrison, J. A., Stuart, S. J., Ni, B., and Sinnott, S. B., 2002, “A Second-Generation Reactive Empirical Bond Order (Rebo) Potential Energy Expression for Hydrocarbons,” J. Phys.: Condens. Matter

[CrossRef]14 , pp. 783–802.

Foiles, S. M., 1994, “Evaluation of Harmonic Methods for Calculating the Free Energy of Defects in Solids,” Phys. Rev. B

[CrossRef]49 , pp. 14930–14938.

Chandler, D., "*Introduction to Modern Statistical Mechanics*" (Oxford University Press, Oxford, 1987).

Najafabadi, R., and Srolovitz, D. J., 1995, “Evaluation of the Accuracy of the Free-Energy-Inimization Method,” Phys. Rev. B

[CrossRef]52 , pp. 9229–9241.

LeSar, R., Najafabadi, R., and Srolovitz, D. J., 1989, “Finite-Temperature Defect Properties from Free-Energy Minimization,” Phys. Rev. Lett.

[CrossRef]63 , pp. 624–627.

Born, M., and Huang, K., 1954, “"*Dynamical Theory of the Crystal Lattices*",” Oxford University Press, Oxford.

Milstein, F., 1980, “Review: Theoretical Elastic Behaviour at Large Strains,” J. Mater. Sci.

[CrossRef], 15 , pp. 1071–1084.

Ashcroft, N. W., and Mermin, N., 1976, "*Solid State Physics*",” Saunders College, Philadelphia.

Ashcroft, N. W., and Mermin, N., 1981, "*Solid State Physics*", Holt-Saunders, Japan, Tokyo.

"*Physics of Group IV Elements and III-V Compounds*", 1982, edited by MadelungLandolt-Börnstein, New Series, Group III , Vol. 17 , Springer-Verlag, Berlin.

Billings, B. H., and Gray, D. E., 1972, "*American Institute of Physics Handbook*", McGraw-Hill, New York.

Jiang, H., Liu, B., Huang, Y., and Hwang, K. C., 2004, “Thermal Expansion of Single Wall Carbon Nanotubes,” ASME J. Eng. Mater. Technol.

[CrossRef], 126 , pp. 265–270.

Raravikar, N. R., Keblinski, P., Rao, A. M., Dresselhaus, M. S., Schadler, L. S., and Ajayan, P. M., 2002, “Temperature Dependence of Radial Breathing Mode Raman Frequency of Single-Walled Carbon Nanotubes,” Phys. Rev. B

[CrossRef]66 , p. 235424.

Tersoff, J., 1988, “Empirical Interatomic Potential for Carbon, with Applications to Amorphous Carbon,” Phys. Rev. Lett.

[CrossRef]61 , pp. 2879–2882.

Yakobson, B. I., Campbell, M. P., Brabec, C. J., and Bernholc, J., 1997, “High Strain Rate Fracture and C-chain Unraveling in Carbon Nanotubes,” Comput. Mater. Sci.

[CrossRef]8 , pp. 341–348.

Ogata, S., and Shibutani, Y., 2003, “Ideal Tensile Strength and Band Gap of Single-Walled Carbon Nanotubes,” Phys. Rev. B

[CrossRef]68 , p. 165409.

Mielke, S., Troya, D., Zhang, S., Li, J. L., Xiao, S., Car, R., Ruoff, R. S., Schatz, G. C., and Belytschko, T., 2004, “The Role of Vacancy Defects and Holes in the Fracture of Carbon Nanotubes,” Chem. Phys. Lett.

[CrossRef]390 , pp. 413–420.

Saito, R., Dresselhaus, G., and Dresselhaus, M. S., 1998, "*Physical Properties of Carbon Nanotubes*", Imperial College Press, London.

Liu, B., Huang, Y., Jiang, H., Qu, S., and Hwang, K. C., 2004, “The Atomic-Scale Finite Element Method,” Comput. Methods Appl. Mech. Eng.

[CrossRef]193 , pp. 1849–1864.

Liu, B., Jiang, H., Huang, Y., Qu, S., Yu, M. F., and Hwang, K. C., “Atomic-Scale Finite Element Method in Multiscale Computation with Applications to Carbon Nanotubes,” Phys. Rev. B (to be published).