Clyne, T. W., and Withers, P. J., 1993, "*An Introduction to Metal Matrix Composites*", University Press, Cambridge, UK.

Steglich, D., and Brocks, W., 1997, “Micromechanical Modeling of the Behavior of Ductile Materials Including Particles,” Comput. Mater. Sci.

[CrossRef], 9 , pp. 7–17.

Llorca, J., and Gonzales, C., 1998, “Microstructural Factors Controlling the Strength and Ductility of Particle Reinforced Metal-Matrix Composites,” J. Mech. Phys. Solids

[CrossRef], 46 , pp. 1–28.

Ghosh, S., and Moorthy, S., 1998, “Particle Fracture Simulation in Nonuniform Microstructures of Metal-Matrix Composites,” Acta Mater.

[CrossRef], 46 (3), pp. 965–982.

Doghri, I., and Quaar, A., 2003, “Homogenization of Two-Phase Elasto-Plastic Composite Materials and Structures—Study of Tangent Operators, Cyclic Plasticity and Numerical Algorithms,” Int. J. Solids Struct.

[CrossRef], 40 , pp. 1681–1712.

Silva, N., and Velhinho, A., 2006, “Assessment of Particle Clustering in MMCs by Quantitative Image Analysis,” Mater. Sci. Forum, 514–516 , pp. 779–783.

Goh, C. S., Wei, J., Lee, L. C., and Gupta, M., 2006, “Effect of Fabrication Techniques on the Properties of Carbon Nanotubes Reinforced Magnesium,” Solid State Phenom., 111 , pp. 179–182.

Dorner-Reisel, A., Nishida, Y., Klemm, V., Nestler, K., Marx, G., and Müller, E., 2002, “Investigation of Interfacial Interaction Between Uncoated and Coated Carbon Fibres and the Magnesium Alloy AZ91,” Anal. Bioanal. Chem., 374 , pp. 635—638.

Moorthy, S., and Ghosh, S., 2000, “Adaptivity and Convergence in the Voronoi Cell Finite Element Model for Analyzing Heterogeneous Materials,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 185 , pp. 37–74.

Ghosh, S., Lee, K., and Raghavan, P., 2001, “A Multi-Level Computational Model for Multiscale Damage Analysis in Composite and Porous Materials,” Int. J. Solids Struct.

[CrossRef], 38 (14), pp. 2335–2385.

Chaboche, J. L., Kanouté, P., and Roos, A., 2005, “On the Capabilities of Mean-Field Approaches for the Description of Plasticity in Metal Matrix Composites,” Int. J. Plast.

[CrossRef], 21 (7), pp. 1409–1434.

Doghri, I., and Tinel, L., 2005, “Micromechanical Modeling and Computation of Elastic-Plastic Materials Reinforced With Distributed-Orientation Fibers,” Int. J. Plasticity, 21 (10), pp. 1919–1940.

Ma, H., and Gengkai Hu, G., 2006, “Influence of Fiber’s Shape and Size on Overall Elastoplastic Property for Micropolar Composites,” Int. J. Solids Struct.

[CrossRef], 43 , pp. 3025–3043.

Zhou, F. H., Hashimoto, R., Ogawa, A., and Sofue, Y., 2006, “Residual Stress and Its Effect on Yielding in SiC∕Ti Plate,” JSME Int. J., Ser. A

[CrossRef], 49 (1), pp. 25–31.

Okabe, T., Nishikawa, M., Takeda, N., and Sekine, H., 2006, “Effect of Matrix Hardening on the Tensile Strength of Alumina Fiber-Reinforced Aluminum Matrix Composites,” Acta Mater.

[CrossRef], 54 , pp. 2557–2566.

Brockenbrough, J. R., and Suresh, S., 1990, “Plastic Deformation of Continuous Fiber-Reinforced Metal-Matrix Composites: Effects of Fiber Shape and Distribution,” Scr. Metall. Mater.

[CrossRef], 24 , pp. 325–330.

Brockenbrough, J. R., Suresh, S., and Wienecke, H. A., 1991, “Deformation of Metal Matrix Composites With Continuous Fibers: Geometric Effects of Fiber Distribution and Shape,” Acta Metall. Mater.

[CrossRef], 39 (5), pp. 735–752.

Arnold, S. M., Pindera, M-J., and Wilt, T. E., 1996, “Influence of Fiber Architecture on the Inelastic Response of Metal Matrix Composites,” Int. J. Plast.

[CrossRef], 12 (4), pp. 507–545.

Corbin, S. F., and Wilkinson, D. S., 1994, “The Influence of Particle Distribution on the Mechanical Response of a Particulate Metal Matrix Composite,” Acta Metall. Mater.

[CrossRef], 42 (4), pp. 1311–1318.

Conlon, K. T., and Wilkinson, D. S., 2001, “Effect of Particle Distribution on Deformation and Damage of Two-Phase Alloys,” Mater. Sci. Eng., A

[CrossRef], 317 , pp. 108–114.

Johnson, W. S., Lubowinski, S. J., and Highsmith, A. L., 1990, “Mechanical Characterization of Unnotched SCS6/Ti-15-3 Metal Matrix Composites at Room Temperature,” in: "*Thermal and Mechanical Behaviour of Metal Matrix and Ceramic Matrix Composites*", ASTM STP 1080, J. M.Kennedy, H. H.Moeller, and W. S.Johnson, eds., American Society for Testing and Materials, Philadelphia, pp. 193–218.

Goda, K., 2002, “Creep-Rupture Lifetime Simulation of Unidirectional Metal Matrix Composites With and Without Time-Dependent Fiber Breakage,” Int. J. Plast.

[CrossRef], 18 , pp. 1729–1748.

Ohno, N., and Miyakeb, T., 1999, “Stress Relaxation in Broken Fibers in Unidirectional Composites: Modeling and Application to Creep Rupture Analysis,” Int. J. Plast.

[CrossRef], 15 , pp. 167–189.

Aboudi, J., Pindera, M-J., and Arnold, S. M., 2001, “Linear Thermoelastic Higher-Order Theory for Periodic Multiphase Materials,” ASME J. Appl. Mech.

[CrossRef], 68 (5), pp. 697–707.

Aboudi, J., Pindera, M-J., and Arnold, S. M., 2003, “Higher-Order Theory for Periodic Multiphase Materials With Inelastic Phases, Int. J. Plast.

[CrossRef], 19 (6), pp. 805–847.

Bansal, Y., and Pindera, M-J., 2005, “A Second Look at the Higher-Order Theory for Periodic Multiphase Materials,” ASME J. Appl. Mech.

[CrossRef], 72 , pp. 177–195;see also: NASA CR2004-213043.

Bansal, Y., and Pindera, M-J., 2006, “Finite-Volume Direct Averaging Micromechanics of Heterogeneous Materials With Elastic-Plastic Phases,” Int. J. Plast.

[CrossRef], 22 (5), pp. 775–825.

Bufler, H., 1971, “Theory of Elasticity of a Multilayered Medium,” J. Elast.

[CrossRef], 1 , pp. 125–143.

Pindera, M-J., 1991, “Local/Global Stiffness Matrix Formulation for Composite Materials and Structures,” Composites Eng., 1 (2), pp. 69–83.

Becker, W., Pindera, M-J., and Herakovich, C. T., 1987, “Mechanical Response of Unidirectional Boron/Aluminum Under Combined Loading,” CCMS-87-06, VPI-E-87–17, Center for Composite Materials and Structures, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.

Pindera, M-J., and Herakovich, C. T., 1986, “Shear Characterization of Unidirectional Composites With the Off-Axis Tension Test,” Exp. Mech.

[CrossRef], 26 (1), pp. 103–112.

Pindera, M-J., Choksi, G. N., Hidde, J. S., and Herakovich, C. T., 1987, “A Methodology for Accurate Shear Characterization of Unidirectional Composites,” J. Compos. Mater.

[CrossRef], 21 (12), pp. 1164–1184.

Pindera, M-J., 1989, "*Shear Testing of Fiber Reinforced Metal Matrix Composites, in Metal Matrix Composites: Testing, Analysis and Failure Modes*", ASTM STP 1032, W.S.Johnson, ed., American Society for Testing and Materials, Philadelphia, pp. 19–42.

Aghdam, M. M., Pavier, M. J., and Smith, D. J., 2001, “Micromechanics of Off-Axis Loading of Metal Matrix Composites Using Finite Element Analysis,” Int. J. Solids Struct.

[CrossRef], 38 , pp. 3905–3925.

Paley, M., and Aboudi, J., 1992, “Micromechanical Analysis of Composites by the Generalized Method of Cells,” Mech. Mater.

[CrossRef], 14 , pp. 127–139.

Williams, T. O., 2005, “A Two-Dimensional, Higher-Order, Elasticity-Based Micromechanics Model,” Int. J. Solids Struct.

[CrossRef], 42 , pp. 1009–1038.

Achenbach, J. D., 1975, "*A Theory of Elasticity With Microstructure for Directionally Reinforced Composites*", Springer-Verlag, New York.

Hill, R., 1963, “Elastic Properties of Reinforced Solids: Some Theoretical Principles,” J. Mech. Phys. Solids

[CrossRef], 11 , pp. 357–372.

Mendelson, A., 1986, "*Plasticity: Theory and Application*", Krieger Publishing Co., Malabar, FL (reprint edition).

Cavalcante, M. A. A., Marques, S. P. C., and Pindera, M-J., 2007, “Parametric Formulation of the Finite-Volume Theory for Functionally Graded Materials. Part I: Analysis, Part II: Numerical Results,” J. Applied Mechanics, in press.

Dvorak, G. J., 1992, “Transformation Field Analysis of Inelastic Composite Materials,” Proc. R. Soc. London, Ser. A, 431 , pp. 89–110.

Herakovich, C. T., 1998, “"*Mechanics of Fibrous Composites*",” John Wiley & Sons, Inc., New York.

Williams, T. O., and Pindera, M-J., 1997, “An Analytical Model for the Inelastic Axial Shear Response of Unidirectional Metal Matrix Composites,” Int. J. Plast.

[CrossRef], 13 (3), pp. 261–289.

Voyiadjis, G. Z., and Guelzim, Z., 1996, “A Coupled Incremental Damage and Plasticity Theory for Metal Matrix Composites,” J. Mech. Behav. Mater., 6 , pp. 193–219.

Pindera, M-J., and Lin, M. W., 1989, “Micromechanical Analysis of the Elastoplastic Response of Metal Matrix Composites,” ASME J. Pressure Vessel Technol., 111 (2), pp. 183–190.

Pindera, M-J., Herakovich, C. T., Becker, W., and Aboudi, J., 1990, “Nonlinear Response of Unidirectional Boron/Aluminum,” J. Compos. Mater.

[CrossRef], 24 (1), pp. 2–21.

Aboudi, J., 1991, "*Mechanics of Composite Materials—A Unified Micromechanical Approach*", Elsevier, Amsterdam.

Pindera, M-J., and Freed, A. D., 1994, “The Effect of Matrix Microstructure on Thermally-Induced Residual Stresses in SiC/Titanium Aluminide Composites,” ASME J. Eng. Mater. Technol., 116 (2), pp. 215–221.

Kontou, E., and Spathis, G., 2006, “Application of Finite Strain Viscoplasticity to Polymeric Fiber Composites,” Int. J. Plast.

[CrossRef], 22 (7), pp. 1287–1303.