Pollock, T. M., and Tin, S., 2006, “Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties,” J. Propul. Power, 22 (2), pp. 362–374.
Cowles, B. A., 1996, “High Cycle Fatigue in Aircraft Gas Turbines: An Industry Perspective,” Int. J. Fract.
[CrossRef], 80 , pp. 147–163.
Larsen, J. M., Worth, B. D., Annis, C. G., and Haake, F. K., 1989, “An Assessment of the Role of Near-Threshold Crack Growth in High-Cycle-Fatigue Life Prediction of Aerospace Titanium Alloys Under Turbine Engine Spectra,” Int. J. Fract.
[CrossRef], 80 , pp. 237–255.
Wright, P. K., Jain, M., and Cameron, D., 2004, “High Cycle Fatigue in a Single Crystal Superalloy: Time Dependence at Elevated Temperature,” "Superalloys-2004", K.A.Green , T.M.Pollack , H.Harada , T.E.Howson , R.C.Reed , J.J.Schirra , and S.Walston , eds., TMS, Seven Springs, PA, pp. 657–666.
Brown, G. S., and Lavender, W., 1991, "Handbook on Synchrotron Radiation", North-Holland, Amsterdam, Vol. 3 , Chap. 2.
Willertz, L., 1980, “Ultrasonic Fatigue,” Int. Met. Rev., 2 , pp. 65–78.
Mayer, H., 1999, “Fatigue Crack Growth and Threshold Measurements at Very High Frequencies,” Int. Mater. Rev., 44 (1), pp. 1–34.
Fonte, M. A., Stanzl-Tschegg, S. E., Tschegg, E. K., and Vasudevan, A. K., 2001, “Fatigue Crack Growth and Thresholds in 7075 Aluminium Alloy at Negative Stress Rations,” "Proceedings of International Conference on Fatigue in the Very High Cycle Regime", E.Stanzl-Tschegg and H.Mayer, eds., Vienna, Austria, pp. 363–370.
2006, Special Issue on the Third International Conference on Very High Cycle Fatigue (VHCF-3), Kyoto/Kusatsu, Japan on 16–19 September, 2004, T.Sakai, Y.Ochi, and J.W.Jones, eds., Int. J. Fatigue, 28 (11), pp. 1437–1666.
2007, "Proceedings of Fourth International Conference on Very High Cycle Fatigue", J.E.Allison, J.W.Jones, J.M.Larsen, and R.Ritchie, eds., TMS, Warrendale, PA.
Yi, J. Z., Torbet, C. J., Feng, Q., Pollock, T. M., and Jones, J. W., 2007, “Ultrasonic Fatigue of a Single Crystal Ni-Base Superalloy at 1000°C,” Mater. Sci. Eng., A
[CrossRef], 443 (1–2), pp. 142–149.
Shyam, A., Torbet, C. J., Jha, S. K., Larsen, J. M., Caton, M. J., Szczepanski, C. J., Pollock, T. M., and Jones, J. W., 2004, “Development of Ultrasonic Fatigue for Rapid High Temperature Fatigue Studies in Turbine Engine Materials,” "Superalloys-2004", K.A.Green , T.M.Pollack , H.Harada , T.E.Howson , R.C.Reed , J.J.Schirra , and S.Walston , eds., TMS, Seven Springs, PA, pp. 259–268.
Szczepanski, C. J., Shyam, A., Jha, S. K., Larsen, J. M., Torbet, C. J., Johnson, S. J., and Jones, J. W., 2005, “Characterization of the Role of Microstructure on the Fatigue Life of Ti-6Al-2Sn-4Zr-6Mo Using Ultrasonic Fatigue,” "Materials Damage Prognosis", J.M.Larsen , L.Christodoulou , J.R.Calcaterra , M.L.Dent , M.M.Derriso , W.J.Hardman , J.W.Jones , and S.M.Russ, eds., TMS, pp. 315–320.
Zhu, X., Shyam, A., Jones, J. W., Mayer, H., Lasecki, J. V., and Allison, J. E., 2006, “Effects of Microstructure and Temperature on Fatigue Behavior of E319-T7 Cast Aluminum Alloy in Very Long Life Cycles,” Int. J. Fatigue
[CrossRef], 28 , pp. 1566–1571.
Torbet, C. J., Liu, L., Yi, J. Z., Husseini, N. S., Kumah, D. P., Clarke, R., Pollock, T. M., and Jones, J. W., 2007, “An Experimental Setup for In Situ Imaging of High Cycle Fatigue Crack Growth by Synchrotron X-Radiation,” Rev. Sci. Instrum., submitted.
Feng, Q., Picard, Y. N., Liu, H., Yalisove, S. M., Mourou, G., and Pollock, T. M., 2004, “Femtosecond Laser Micromachining of Single-Crystal Superalloys,” "Superalloys-2004", K.A.Green , T.M.Pollack , H.Harada , T.E.Howson , R.C.Reed , J.J.Schirra , and S.Walston , eds., TMS, Seven Springs, PA, pp. 687–696.
The MathWorks Inc., Natick, MA.
Chan, K. S., Feiger, J., Lee, Y.-D., John, R., and Hudak, S. J., 2005, “Fatigue Crack Growth Thresholds of Deflected Mixed-Mode Cracks in PWA1484,” ASME J. Eng. Mater. Technol.
[CrossRef], 127 , pp. 2–7.
Snigirev, A., Snigireva, I., Kohn, V., Kuznetsov, S., and Schelokov, I., 1995, “On the Possibilities of X-Ray Phase Contrast Microimaging by Coherent High-Energy Synchrotron Radiation,” Rev. Sci. Instrum.
[CrossRef], 66 (12), pp. 5486–5492.
Husseini, N. S., Kumah, D. P., Yi, J. Z., Torbet, C. J., Dufresne, E., Arms, D. A., Jones, J. W., Pollock, T. M., and Clarke, R., 2007, “Mapping Single-Crystal Dendritic Microstructure in Nickel-Base Superalloys With Synchrotron Radiation,” Acta Mater., submitted.
Leverant, G. R., and Gell, M., 1975, “The Influence of Temperature and Cyclic Frequency on the Fatigue Fracture of Cube Oriented Nickel-Base Superalloy Single Crystals,” Metall. Trans. A
[CrossRef], 6A , pp. 367–371.
Reed, P. A. S., Sinclair, I., and Wu, X. D., 2000, “Fatigue Crack Path Prediction in UDIMET 720 Nickel-Based Alloy Single Crystals,” Metall. Mater. Trans. A
[CrossRef], 31 (1), pp. 109–123.
Lerch, B. A., and Antolovich, S. D., 1990, “Fatigue Crack Propagation Behavior of a Single Crystalline Superalloy,” Metall. Trans. A
[CrossRef], 21 (8), pp. 2169–2177.
Arakere, N. K., 2004, “High-Temperature Fatigue Properties of Single Crystal Superalloys in Air and Hydrogen,” ASME J. Eng. Gas Turbines Power
[CrossRef], 126 (3), pp. 590–603.
MacLachlan, D. W., and Knowles, D. M., 2001, “Fatigue Behaviour and Lifing of Two Single Crystal Superalloys,” Fatigue Fract. Eng. Mater. Struct.
[CrossRef], 24 (8), pp. 503–521.
Lukas, P., Kunz, L., and Svoboda, M., 2004, “High Cycle Fatigue of Superalloy Single Crystals at High Mean Stress,” Mater. Sci. Eng., A, 387–389 , pp. 505–510.
Chen, Q., and Liu, H. W., 1988, “Resolved Shear Stress Intensity Coefficient and Fatigue Crack Growth in Large Crystals,” NASA-CR-182137.
Telesman, J., and Ghosn, L. J., 1996, “Fatigue Crack Growth Behavior of PWA 1484 Single Crystal Superalloy at Elevated Temperatures,” ASME J. Eng. Gas Turbines Power
[CrossRef], 118 (2), pp. 399–405.
Flouriot, S., Forest, S., and Remy, L., 2003, “Strain Localization Phenomena under Cyclic Loading: Application to Fatigue of Single Crystals,” Comput. Mater. Sci.
[CrossRef], 26 , pp. 61–70.
Forest, S., Boubidi, P., and Sievert, R., 2001, “Strain Localization Patterns at a Crack Tip in Generalized Single Crystal Plasticity,” Scr. Mater.
[CrossRef], 44 (6), pp. 953–958.