Greenwood, G. W., and Johnson, R. H., 1965, “The Deformation of Metals Under Small Stresses During Phase Transformation,” Proc. R. Soc. London, Ser. A, 283 , pp. 403–422.

Magee, C. L., 1966, “Transformation Kinetics, Microplasticity and Aging of Martensite in Fe-31Ni,” Ph.D. thesis, Carnegie Institute of Technology, Pittsburgh, PA.

Talyan, V., Wagoner, R. H., and Lee, J. K., 1998, “Formability of Stainless Steel,” Metall. Mater. Trans. A

[CrossRef], 29A , pp. 2161–2172.

Kanni Raj, A., and Padmanabhan, K. A., 1999, “Prediction of the Formability of Metastable Low Nickel Austenitic Stainless Steel Sheets,” J. Mater. Process. Technol.

[CrossRef], 94 , pp. 201–207.

Takuda, H., Mori, K., Masachika, T., Yamazaki, E., and Watanabe, Y., 2003, “Finite Element Analysis of the Formability of an Austenitic Stainless Steel Sheet in Warm Deep Drawing,” J. Mater. Process. Technol., 143–144 , pp. 242–248.

Stringfellow, R. G., Parks, D. M., and Olson, G. B., 1992, “A Constitutive Model for Transformation Plasticity Accompanying Strain-Induced Martensitic Transformation in Metastable Austenitic Steels,” Acta Metall. Mater.

[CrossRef], 40 , pp. 1703–1716.

Iwamoto, T., Tsuta, T., and Tomita, Y., 1998, “Investigation on Deformation Mode Dependence of Strain-Induced Martensitic Transformation in Trip Steels and Modelling of Transformation Kinetics,” Int. J. Mech. Sci.

[CrossRef], 40 , pp. 173–182.

Perlade, A., Bouaziz, O., and Furnemont, Q., 2003, “A Physically Based Model for Trip-Aided Carbon Steels Behaviour,” Mater. Sci. Eng., A

[CrossRef], 356 (1–2), pp. 145–152.

Lecroisey, F., and Pineau, A., 1972, Metall. Trans.

[CrossRef], 3 , pp. 387–396.

Olson, G. B., and Cohen, M., 1975, “Kinetics of Strain-Induced Martensitic Nucleation,” Metall. Trans. A

[CrossRef], 6A , pp. 791–795.

Cherkaoui, M., Berveiller, M., and Sabar, H., 1998, “Micromechanical Modeling of Martensitic TRansformation Induced Plasticity (TRIP) in Austenitic Single Crystals,” Int. J. Plast.

[CrossRef], 14 , pp. 597–626.

Levitas, V. I., 1998, “Thermomechanical Theory of Martensitic Phase Transformations in Inelastic Materials,” Int. J. Solids Struct.

[CrossRef], 35 (9–10), pp. 889–940.

DeMania, A. D., 1995, “The Influence of Martensite Transformation on the Formability of Stainless Steel Sheet,” MS thesis, Department of Mechanical Engineering, MIT.

Miller, M. P., and McDowell, D. L., 1996, “The Effect of Stress State on the Large Strain Inelastic Deformation Behaviour of 304L Stainless Steel,” ASME J. Eng. Mater. Technol.

[CrossRef], 118 , p. 28.

Diani, J. M., and Parks, D. M., 1998, “Effects of Strain State on the Kinetics of Strain Induced Martensite in Steels,” J. Mech. Phys. Solids

[CrossRef], 46 , pp. 1613–1635.

Lebedev, A. A., and Kosarchuk, V. V., 2000, “Influence of Phase Transformations on the Mechanical Properties of Austenitic Stainless Steels,” Int. J. Plast.

[CrossRef], 16 , pp. 749–767.

Jacques, P., Furnemont, Q., Pardoen, T., and Delannay, F., 2001, “On the Role of Martensitic Transformation on Damage and Cracking Resistance in Trip-Assisted Multiphase Steels,” Acta Mater.

[CrossRef], 49 , pp. 139–152.

Andersson, R., Oden, M., and Magnusson, C., 2005, “A New Equation to Describe the Microstructural Transformation of Meta-Stable Austenitic Stainless Steels During Plastic Deformation,” , submitted.

Azzouz, F., Cailletaud, G., Antretter, T., Fischer, F. D., and Tanaka, K., 2000, “Transformation Induced Plasticity (TRIP) in Steels Subjected to Nonmonotonic Loading Paths—Experiments and Theory,” "*Proceedings of the Conference on Plasticity*", Vancouver, pp. 175–177.

Prantil, V. C., Callabresi, M. L., Lathrop, J. F., Ramaswamy, G. S., and Lusk, M. T., 2003, “Simulating Distortion and Residual Stresses in Carburized Thin Strips,” ASME J. Eng. Mater. Technol.

[CrossRef], 125 , pp. 116–124.

Cherkaoui, M., Berveiller, M., and Lemoine, X., 2000, “Couplings Between Plasticity and Martensitic Phase Transformation: Overall Behaviour of Polycrystalline TRIP Steels,” Int. J. Plast.

[CrossRef], 16 , pp. 1215–1241.

Leblond, J. B., 1989, “Mathematical Modelling of Transformation Plasticity in Steels II: Coupling With Strain Hardening Phenomena,” Int. J. Plast.

[CrossRef], 5 , pp. 573–591.

Taleb, L., and Sidoroff, F., 2003, “A Micromechanical Modeling of the Greenwood-Johnson Mechanism in Transformation Induced Plasticity,” Int. J. Plast.

[CrossRef], 19 (10), pp. 1821–1842.

Idesman, A. V., Levitas, V. I., and Stein, E., 1999, “Elastoplastic Materials With Martensitic Phase Transformation and Twinning at Finite Strains: Numerical Solution With the Finite Element Method,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 173 , pp. 71–98.

Reisner, G., Werner, E. A., and Fischer, F. D., 1998, “Micromechanical Modeling of Martensitic Transformation in Random Microstructures,” Int. J. Solids Struct.

[CrossRef], 35 , pp. 2457–2473.

Tsuchida, N., and Tomota, Y., 2000, “A Micromechanic Modeling for Transformation Induced Plasticity in Steels,” Mater. Sci. Eng., A

[CrossRef], 285 , pp. 346–352.

Fischer, F. D., Reisner, G., Werner, E., Tanaka, K., Cailletaud, G., and Antretter, T., 2000, “A New View on Transformation Induced Plasticity,” Int. J. Plast.

[CrossRef], 16 , pp. 723–748.

Beaudoin, A. J., Dawson, P. R., Mathur, K. K., Kocks, U. F., and Korzekwa, D. A., 1994, “Application of Polycrystal Plasticity to Sheet Forming,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 117 , pp. 49–70.

Bacroix, B., and Gilormini, P., 1995, “Finite-Element Simulations of Earing in Polycrystalline Materials Using a Texture-Adjusted Strain-Rate Potential,” Modell. Simul. Mater. Sci. Eng.

[CrossRef], 3 , pp. 1–21.

Van Houtte, P., Van Bael, A., and Winters, J., 1995, “The Incorporation of Texture-Based Yield Loci Into Elasto-Plastic Finite Element Programs,” Textures Microstruct., 24 , pp. 255–272.

Inal, K., Wu, P. D., and Neale, K. W., 2002, “Finite Element Analysis of Localization in FCC Polycrystalline Sheets Under Plane Stress Tension,” Int. J. Solids Struct.

[CrossRef], 39 , pp. 3469–3486.

Knibloe, J. R., and Wagoner, R., 1989, “Experimental Investigation and Finite Element Modeling of Hemispherically Stretched Steel Sheet,” Metall. Trans. A

[CrossRef], 20A , pp. 1509–1521.

Taylor, L., Cao, J., Karafillis, A. P., and Boyce, M. C., 1995, “Numerical Simulations of Sheet-Metal Forming,” J. Mater. Process. Technol.

[CrossRef], 50 , pp. 168–179.

Chung, K., Lee, S. Y., Barlat, F., Keum, Y. T., and Park, J. M., 1996, “Finite Element Simulation of Sheet Forming Based on Anisotropic Strain-Rate Potential,” Int. J. Plast.

[CrossRef], 12 , pp. 93–115.

Moreira, L. P., Ferron, G., and Ferran, G., 2000, “Experimental and Numerical Analysis of the Cup Drawing Test for Orthotropic Metal Sheets,” J. Mater. Process. Technol.

[CrossRef], 108 , pp. 78–86.

Inal, K., Wu, P. D., and Neale, K. W., 2000, “Simulation of Earing in Textured Aluminum Sheets,” Int. J. Plast.

[CrossRef], 16 , pp. 635–648.

Butuc, M. C., Banabic, D., Barata da Rocha, A., Gracio, J. J., Ferreira Duarte, J., Jurco, P., and Comsa, A., 2002, “The Performance of Yld96 and BBC2000 Yield Functions in Forming Limit Prediction,” J. Mater. Process. Technol., 125–126 , pp. 281–286.

Iwamoto, T., and Tsuta, T., 2002, “Computational Simulation on Deformation Behaviour of CT Specimens of Trip Steel Under Mode I Loading for Evaluation of Fracture Toughness,” Int. J. Plast.

[CrossRef], 18 , pp. 1583–1606.

Tomita, Y., and Iwamoto, T., 2001, “Computational Prediction of Deformation Behaviour of TRIP Steels Under Cyclic Loading,” Int. J. Mech. Sci.

[CrossRef], 43 , pp. 2017–2034.

Cherkaoui, M., Soulami, A., Sun, X., and Khaleel, M. A., 2006, “From Micro to Macroscopic Description of Martensitic Transformation in Steels: A Viscoplastic Model,” , in press;, in press.

ABAQUS∕EXPLICIT , 2006, Version 6.6 Manuals, Dassault Systemes.

Kocks, U. F., and Mecking, H., 2003, “Physics and Phenomenology of Strain Hardening,” Prog. Mater. Sci.

[CrossRef], 48 , pp. 171–273.

Estrin, Y., 1998, “Dislocation Theory Based Constitutive Modelling: Foundations and Applications,” J. Mater. Process. Technol., 80–81 , pp. 33–39.

Patel, J. R., and Cohen, M., 1953, “Criterion for the Action of Applied Stress in the Martensitic Transformation,” Acta Metall.

[CrossRef], 1 , pp. 531–538.

Hecker, S. S., Stout, M. G., Staudhammer, K. P., and Smith, J. L., 1982, “Effects of Strain State and Strain Rate on Deformation Induced Transformation in Stainless Steel. I. Magnetic Measurements and Mechanical Behaviour,” Metall. Trans. A

[CrossRef], 13A , pp. 619–626.

Murr, L. E., 1981, “Strain Induced Dislocation Emission From Grain Boundaries in Stainless Steel,” Mater. Sci. Eng.

[CrossRef], 51 , pp. 71–79.

Furnemont, Q., 2003, “The Micromechanics of TRIP-Assisted Multiphase Steels,” Ph.D. thesis, Universite Catholique de Louvain.

Wechsler, M. S., Lieberman, D. S., and Read, T. A., 1953, “On the Theory of the Formation of Martensite,” Trans. AIME, 197 , pp. 1503–1515.

Kuhlman-Wilsdorf, D., 1962, Trans. Metall. Soc. AIME, 218 , p. 962.

Stokes, R. J., and Cottrel, A. H., 1954, “Work Softening in Aluminium Crystals,” Acta Metall.

[CrossRef], 2 , pp. 341–342.

Nes, E., 1997, “Modelling of Work Hardening and Stress Saturationin FCC Metals,” Prog. Mater. Sci.

[CrossRef], 41 , pp. 129–193.

Cheng, S., Ma, E., 2005, “Tensile Properties of In Situ Consolidated Nanocrystalline Cu,” Acta Mater.

[CrossRef], 53 , pp. 1521–1533.

Wei, Q., Cheng, S., Ramesh, K. T., and Ma, E., 2004, “Effect of Nanocrystalline and Ultrafine Grain Sizes on the Strain Rate Sensitivity and Activation Volume: fcc Versus bcc Metals,” Mater. Sci. Eng., A

[CrossRef], 381 , pp. 71–79.

Taylor, G. I., 1934, “The Mechanism of Plastic Deformations of Crystals,” Proc. R. Soc. London, Ser. A

[CrossRef], 145 , pp. 362–415.

Li, J. C. M., 1963, “Petch Relation and Grain Boundary Sources,” Trans. Metall. Soc. AIME, 227 , p. 239.

Estrin, Y., and Mecking, H., 1984, “A Unified Phenomenolgical Description of Work Hardening and Creep Based on One Parameter Models,” Acta Metall.

[CrossRef], 32 , pp. 57–70.

Kocks, U. F., 1976, “Laws for Work Hardening and Low Temperature Creep,” ASME J. Eng. Mater. Technol., 98 , pp. 76–85.

Serri, J., 2006, “Caractérisation expérimentale et modélisation du comportement plastique d’aciers à transformation martensitique. Applications à la mise en Forme.” Thèse de doctorat, Université de Metz.

Sumitomo, H., Arakawa, M., Sawatani, T., and Ohoka, T., 1976, J. Jpn. Soc. Technol. Plast., 17 , p. 891.

Serri, J., Martiny, M., and Ferron, G., 2005, “Finite Element Analysis of the Effects of Martensitic Phase Transformation in Trip Steel Sheet Forming,” Int. J. Mech. Sci.

[CrossRef], 47 , pp. 884–901.

Kubler, R., 2004, “Comportement thermomécanique des aciers à effet TRIP: Approches micromécaniques et phénoménologiques—applications à la mise en forme,” thèse de doctorat, ENSAM de Metz.

Hourman, T., Hochard, J. L., and Mess, G., 2000, LEDEPP, Arcelor, rapport interne.

Sumitomo, H., 1978, “Earing and Delayed Cracking of Deep Drawn Cup of Austenitic Stainless Steel Sheets,” Advanced Technology of Plasticity, 2 , pp. 1289–1297.