Drago, A. S., and Pindera, M.-J., 2007, “Micro-Macromechanical Analysis of Heterogeneous Materials: Macroscopically Homogeneous vs Periodic Microstructures,” Compos. Sci. Technol.

[CrossRef], 67 (6), pp. 1243–1263.

Sanchez-Palencia, E., 1980, "*Non-Inhomogeneous Media and Vibration Theory*" (Lecture Notes in Physics 127 ), Springer-Verlag, Berlin.

Suquet, P. M., 1987, "*Elements of Homogenization for Inelastic Solid Mechanics*" (Lecture Notes in Physics 272 ), Springer-Verlag, Berlin, pp. 193–278.

Bansal, Y., and Pindera, M.-J., 2005, “A Second Look at the Higher-order Theory for Periodic Multiphase Materials,” ASME J. Appl. Mech.

[CrossRef], 72 , pp. 177–195, see also NASA CR2004-213043.

Bansal, Y., and Pindera, M.-J., 2006, “Finite-Volume Direct Averaging Micromechanics of Heterogeneous Materials With Elastic-Plastic Phases,” Int. J. Plast.

[CrossRef], 22 (5), pp. 775–825.

Pindera, M.-J., and Bansal, Y., 2007, “On the Micromechanics-Based Simulation of Metal Matrix Composite Response,” ASME J. Eng. Mater. Technol.

[CrossRef], 129 (3), pp. 468–482.

Aboudi, J., Pindera, M.-J., and Arnold, S. M., 1999, “Higher-Order Theory for Functionally Graded Materials,” Composites, Part B

[CrossRef], 30 (8), pp. 777–832.

Aboudi, J., Pindera, M.-J., and Arnold, S. M., 2001, “Linear Thermoelastic Higher-Order Theory for Periodic Multiphase Materials,” ASME J. Appl. Mech.

[CrossRef], 68 (5), pp. 697–707.

Aboudi, J., Pindera, M.-J., and Arnold, S. M., 2003, “Higher-Order Theory for Periodic Multiphase Materials With Inelastic Phases,” Int. J. Plast.

[CrossRef], 19 , pp. 805–847.

Bufler, H., 1971, “Theory of Elasticity of a Multilayered Medium,” J. Elast.

[CrossRef], 1 , pp. 125–143.

Pindera, M.-J., 1991, “Local/Global Stiffness Matrix Formulation for Composite Materials and Structures,” Composites Eng., 1 (2), pp. 69–83.

Zhong, Y., Bansal, Y., and Pindera, M.-J., 2004, “Efficient Reformulation of the Thermal Higher-Order Theory for FGMs With Variable Thermal Conductivity,” Int. J. Comput. Eng. Sci., 5 (4), pp. 795–831.

Bansal, Y., and Pindera, M.-J., 2003, “Efficient Reformulation of the Thermoelastic Higher-Order Theory for FGMs,” J. Therm. Stresses

[CrossRef], 26 (11/12), pp. 1055–1092.

Versteeg, H. K., and Malalasekera, W., 1995, "*An Introduction to Computational Fluid Dynamics: The Finite Volume Method*", Prentice-Hall, New York.

Cavalcante, M. A. A., 2006, “Modelling of the Transient Thermo-Mechanical Behavior of Composite Material Structures by the Finite-Volume Theory,” M.S. thesis, Civil Engineering Department, Federal University of Alagoas, Maceio.

Cavalcante, M. A. A., Marques, S. P. C., and Pindera, M.-J., 2007, “Parametric Formulation of the Finite-Volume Theory for Functionally Graded Materials. Part I: Analysis,” ASME J. Appl. Mech.

[CrossRef], 74 (5), pp. 935–945.

Cavalcante, M. A. A., Marques, S. P. C., and Pindera, M.-J., 2007, “Parametric Formulation of the Finite-Volume Theory for Functionally Graded Materials. Part II: Numerical Results,” ASME J. Appl. Mech.

[CrossRef], 74 (5), pp. 946–957.

Hill, R., 1963, “Elastic Properties of Reinforced Solids: Some Theoretical Principles,” J. Mech. Phys. Solids

[CrossRef], 11 , pp. 357–372.

Gattu, M., 2007, “Parametric Finite Volume Theory for Periodic Heterogeneous Materials,” M.S. thesis, Civil Engineering Department, University of Virginia, Charlottesville.

Drago, A. S., and Pindera, M.-J., 2008, “A Locally-Exact Homogenization Theory for Periodic Heterogeneous Materials,” ASME J. Appl. Mech., in press.

Eshelby, J. D., 1957, “The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems,” Proc. R. Soc. London, Ser. A

[CrossRef], 241 , pp. 376–396.

Dugdale, D. S., and Ruiz, C., 1971, "*Elasticity for Engineers*", McGraw-Hill, London.

Moorthy, S., and Ghosh, S., 2000, “Adaptivity and Convergence in the Voronoi Cell Finite Element Model for Analyzing Heterogeneous Materials,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 185 , pp. 37–74.

Ghosh, S., Lee, K., and Raghavan, P., 2001, “A Multi-Level Computational Model for Multiscale Damage Analysis in Composite and Porous Materials,” Int. J. Solids Struct.

[CrossRef], 38 (14), pp. 2335–2385.

Chaboche, J. L., Kanouté, P., and Roos, A., 2005, “On the Capabilities of Mean-Field Approaches for the Description of Plasticity in Metal Matrix Composites,” Int. J. Plast.

[CrossRef], 21 (7), pp. 1409–1434.

Doghri, I., and Tinel, L., 2005, “Micromechanical Modeling and Computation of Elastic-Plastic Materials Reinforced With Distributed-Orientation Fibers,” Int. J. Plast., 21 (10), pp. 1919–1940.

Ma, H., and Hu, G., 2006, “Influence of Fiber’s Shape and Size on Overall Elastoplastic Property for Micropolar Composites,” Int. J. Solids Struct.

[CrossRef], 43 , pp. 3025–3043.

Paulino, G. H., Yin, H. M., and Sun, L. Z., 2006, “Micromechanics-Based Interfacial Debonding Model for Damage of Functionally Graded Materials With Particle Interactions,” Int. J. Damage Mech., 15 (3), pp. 267–288.

Lipton, R. P., 2003, “Assessment of the Local Stress State Through Macroscopic Variables,” Philos. Trans. R. Soc. London, Ser. A

[CrossRef], 361 , pp. 921–946.