Meyer, L. W., Halle, T., Herzig, N., Krüger, L., and Razorenov, S. V., 2006, “Experimental Investigations and Modelling of Strain Rate and Temperature Effects on the Flow Behavior of 1045 Steel,” J. Phys. IV, 134 , pp. 75–80.

Tanimura, S., Hayashi, H., and Yamamoto, T., 2006, “A Practical Constitutive Model Covering a Wide Range of Strain Rates and a Large Region of Strain,” J. Phys. IV, 134 , pp. 55–61.

Diot, S., 2003, “Caractérisation Expérimentale et Numérique du Comportement Dynamique des Matériaux,” Ph.D. thesis, Institut National des Sciences Appliquées de Rennes, France.

Kajberg, J., Sundin, K. G., Melin, L. G., and Stahle, P., 2004, “High Strain-Rate Tensile Testing and Viscoplastic Parameter Identification Using Microscopic High-Speed Photography,” Int. J. Plast., 20 , pp. 561–575.

Diot, S., Gavrus, A., Guines, D., and Ragneau, E., 2002, “Identification of a Forging Steel Behavior From Dynamic Compression Test,” "*Proceedings of the 15th ASCE Engineering Mechanics Conference, EM2002*", Columbia University, New York, NY, Jun. 2–5.

François, D., 2001, "*Essais Mécaniques et Lois de Comportement*", Editions Hermès Sciences, Paris.

Van Rooyen, G. T., and Backoffen, W. A., 1960, “A Study of Interface Friction in Plastic Compression,” Int. J. Mech. Sci.

[CrossRef], 1 , pp. 1–27.

Oh, S. I., and Kobayashi, S., 1975, “An approximate method for a three dimensional analysis of rolling,” Int. J. Mech. Sci.

[CrossRef], 17 (4), pp. 293–305.

Gelin, J. C., Oudin, J., and Ravalard, Y., 1981, “Determination of the Flow Stress-Strain Curves for Metals From Axisymmetric Upsetting,” J. Mech. Work. Technol., 6 , pp. 297–308.

Kunogi, M., 1956, “A New Method of Cold Extrusion,” J. Sci. Res. Inst. (Tokyo), 50 , pp. 215–246.

Male, A. T., and Cockcroft, M. G., 1964, “Coefficient of Friction Under Condition of Bulk Plastic Deformation,” J. Inst. Met., 93 , pp. 38–46.

Avitzur, B., 1964, “Forging of Hollow Discs,” Isr. J. Technol., 2 (3), pp. 295–304.

Gorham, D. A., Pope, P. H., and Cox, O., 1984, “Sources of Error in Very High Strain Rate Compression Tests, Mechanical Properties at High Rates of Strain,” "*Proceedings of the Third Conference on the Mechanical Properties of Materials at High Rates of Strain*", Oxford, Apr. 9–12, Institute of Physics, UK, Conference series Vol. 70 , pp. 151–158.

Walley, S. M., Church, P. D., Furth, M., and Field, J. E., 1997, “A High-Speed Photographic Study of the Rapid Deformation of Metal Annuli: Comparison of Theory With Experiment,” J. Phys. IV7 (C3), pp. 317–322.

Male, A. T., and De Pierre, V., 1970, “The Validity of Mathematical Solutions for Determining Friction From the Ring Compression Test,” ASME J. Lubr. Technol., 39 , pp. 389–397.

Rao, K. P., and Sivaram, K., 1993, “A Review of Ring-Compression Testing and Applicability of the Calibration Curves,” J. Mater. Process. Technol.

[CrossRef], 37 , 295–318.

Liu, J. Y., 1972, “An Analysis of Deformation Characteristics and Interfacial Friction Conditions in Simple Upsetting of Rings,” ASME J. Eng. Ind., 94 (4), pp. 1149–1156.

Lee, C. H., and Altan, T., 1972, “Influence of Flow Stress and Friction upon Metal Flow in Upset Forging of Rings and Cylinders,” ASME J. Eng. Ind., 94 (3), 775–782.

Hwu, Y., Hsu, C., and Wang, F., 1993, “Measurement of Friction and the Flow Stress of Steels at Room and Elevated Temperatures by Ring-Compression Tests,” J. Mater. Process. Technol., 37 , pp. 319–335.

Kopp, R., Luce, R., Leisten, B., Wolskz, M., Tschirnich, M., Rehrmann, T., and Volles, R., 2001, “Flow Stress Measuring by Use of Cylindrical Compression Test and Special Application to Metal Forming Processes,” Steel Res., 72 (10), pp. 394–401.

Kopp, R., Heuben, J. M. M., Philipp, F. D., and Karhausen, K., 1993, “Improvement of Accuracy in Determining Flow Stress in Hot Upsetting Tests,” Steel Res., 64 (8∕9), pp. 377–384.

Mataya, M. C., and Sackschewsky, V. E., 1994, “Effect of Internal Heating During Hot Compression on the Stress-Strain Behavior of Alloy 304L,” Metall. Mater. Trans. A, 25A , pp. 2737–2752.

Parteder, E., and Bünten, R., 1998, “Determination of Flow Curves by Means of a Compression Test Under Sticking Friction Conditions Using an Iterative Finite-Element Procedure,” J. Mater. Process. Technol., 74 , pp. 227–233.

Gavrus, A., 1996, “Identification Automatique des Paramètres Rhéologiques par Analyse Inverse,” Ph.D. thesis, Ecole Nationale Supérieure des Mines de Paris, CEMEF, Sofia Antipolis, France.

Dal Negro, T., D’Alvise, L., Chastel, Y., and Massoni, E., 2001, “Inverse Technique for Automatic Identification of Rheological Parameters in Combined Tension-Torsion and Compression,” "*Proceedings of ESAFORM 2001*", Liège, pp. 419–422.

Szyndler, D., Pietrzyk, M., and Kusiak, R., 2001, “Estimation of Rheological and Friction Parameters in Hot Forming Processes as Inverse Problem,” "*Proceedings of ESAFORM 2001*", Liège pp. 191–194.

Szeliga, D., Matuszyk, P., Kusiak, R., and Pietrzyk, M., 2002, “Identification of Rheological Parameters on the Basis of Various Types of Plastometric Tests,” J. Mater. Process. Technol., 125–126 pp. 150–154.

Gavrus, A., Ragneau, E., and Guines, D., 2002, “Identification of the Friction Coefficients Directly From a Forging Process,” "*Proceedings of Euromech 435, Friction and Wear in Metal Forming*", Jun. 18–20, pp. 125–132, Valenciennes, France.

François, D., 1996, "*Essais Mécaniques des Métaux–Détermination des Lois de Comportement*", Vol. MB2 , Les Techniques de l’Ingénieur, Paris, France.

Nagamatsu, A., Murota, T., and Jimma, T., 1971, “On the Non-Uniform Deformation of Material in Axially Symmetric Compression Caused by Friction, Part One,” Bull. JSME, 14 (70), pp. 331–338.

Nagamatsu, A., Murota, T., and Jimma, T., 1971, “On the Non-Uniform Deformation of Material in Axially Symmetric Compression Caused by Friction, Part Two,” Bull. JSME, 14 (70), pp. 339–347.

Kobayashi, S., Oh, S. I., and Altan, T., 1989, "*Metal Forming and the Finite Element Method*", Oxford University Press, New York.

Deltort, B., Neme, A., and Tanguy, B., 1997, “A New Geometry for Compression Hopkinson Bars,” J. Phys. IV, 7 , pp. 265–270.

FORGE2 ®, Centre de Mise en Forme de Matériaux (CEMEF), Transvalor S.A, BO037, Sophia-Antipolis, France.

Hamdi, R., 1997, “Comportement Quasi-Statique et Dynamique des Aciers Pour Frappe et Forge à Froid,” Ph.D. thesis, Université de Technologie de Compiègne, France.

Stevenson, R., 1981, “A comparison of constitutive relations incorporating strain rate hardening,” J. Eng. Mater. Technol., Technical briefs, 103 , pp. 261-263.

Symonds, P. S., 1967, “Survey of Methods of Analysis for Plastic Deformation of Structures Under Dynamic Loading,” BU∕NSRDC, Brown University, Report No. BU∕NSRDC.

Johnson, R., and Cook, W. H., 1983, “A Constitutive Model and Data for Metal Subjected to Large Strains, High Strain Rates and High Temperatures,” "*Proceedings of the Seventh International Symposium on Ballistics*", The Hague, The Netherlands, pp. 541–547.

Gavrus, A., Ragneau, E., and Caestecker, P., 2003, “Analysis of a Constitutive Model for the Simulation of Dynamic Forming Processes,” Int. J. Form. Processes, 6 (1), pp. 33–52.

Kang, W. J., Cho, S. S., Huh, H., and Chung, D. T., 1999, “Modified Johnson-Cook model for vehicle body crashworthiness simulation,” Int. J. Veh. Des., 21 (4/5), pp. 424–435.

Langrand, B., Geoffroy, P., Petitniot, J.-L., Fabis, J., Markiewicz, E., and Drazetic, P., 1999, “Identification technique of constitutive model parameters for crashworthiness modelling,” Aerosp. Sci. Technol., 3 (4), pp. 215–227.

Liang, R. and Khan, A. S., 1999, “A critical review of experimental results and constitutive models for BBC and FCC metals over a wide range of strain rates and temperatures,” Int. J. Plast. (15), pp. 963–850.

Homquist, T. J., and Johnson, G. R., 1991, “Determination of Constants and Comparison of Results for Various Constitutive Models,” J. Phys. IV, 1 (8), pp. 853–860.

Meyer, L. W., Seifert, K., and Abdel-Malek, S., 1997, “Behavior of Quenched and Tempered Steels Under High Strain Rate Compression Loading,” J. Phys. IV, 7 (8), pp. 571–576.

Zerilli, F. J., and Armstrong, R. W., 1987, “Dislocations Mechanics Base Constitutive Relations for Material Dynamic Calculations,” J. Appl. Phys.

[CrossRef], 61 (5), pp. 1816–1825.

Valentin, T., Magain, P., Quik, M., Labibes, K., and Albertini, C., 2000, “Validation of Constitutive Equations for Steel,” J. Phys. IV, 7 (3), pp. 611–616.

Lei, W., Yao, M., and Chen, B., 1996, “Quantitative Description of Temperature and Strain Rate Dependence of Yield Strength of Structural Steels,” Eng. Fract. Mech., 53 (4), pp. 643–663.

Majta, J., Zurek, A., Trujillo, C., and Bator, A., 2003, “Study of High Strain Rate Plastic Deformation of Low Carbon Microalloyed Steels Using Experimental Observation and Computational Modelling,” J. Phys. IV, 110 , pp. 117–122.

Cabrera, J. M., Prado, J. M., and Barron, M. A., 1999, “An Inverse Analysis of the Hot Uniaxial Compression Test by the Means of the Finite Element Method,” Steel Res., 70 , pp. 59–66.