Orowan, E., 1940, “Problems of Plastic Gliding,” Proc. Phys. Soc. London, 52 , pp. 8–22.

[CrossRef]Mura, T., 1968, “Continuum Theory of Dislocations and Plasticity,” "*Mechanics of Generalized Continua*", E.Kroner, ed., Springer-Verlag, New York, pp. 269–278.

Bilby, B. A., Gardner, L. R. T., and Stroh, A. N., 1957, “Continuous Distributions of Dislocations and the Theory of Plasticity,” Proceedings of the Ninth International Congress of Applied Mechanics , Bruxelles, Vol. 8 , pp. 35–44.

Teodosiu, C., 1970, “A Dynamic Theory of Dislocations and Its Applications to the Theory of the Elastic-Plastic Continuum,” "*Fundamental Aspects of Dislocation Theory*", J.A.Simmons, R.De Wit, and R.Bullough, eds., U.S. Natl. Bur. Stand. Spec. Publ. No. 317, Washington, DC, Vol. II , pp. 837–876.

Rice, J. R., 1971, “Inelastic Constitutive Relations for Solids: An Internal Variable Theory and Its Application to Metal Plasticity,” J. Mech. Phys. Solids, 19 , pp. 433–455.

[CrossRef]De Wit, R., 1973, “Theory of Disclinations II, III, IV,” J. Res. Nat. Bureau Standards A Phys. Chem., 77 , pp. 49–100, 359–368, 607–658.

Mura, T., 1982, "*Micromechanics of Defects in Solids*", Martinus Nijhoff, Dordrecht.

Zener, C., 1942, “Theory of Lattice Expansion Introduced by Cold Work,” Trans. Am. Inst. Min. Metall. Engrs., 147 , pp. 361–368.

Schmid, E., and Boas, I. W., 1950, "*Plasticity of Crystals*", Chapman and Hall, London.

Holder, J., and Granato, A. V., 1969, “Thermodynamic Properties of Solids Containing Defects,” Phys. Rev., 182 , pp. 729–741.

[CrossRef]Wright, T. W., 1982, “Stored Energy and Plastic Volume Change,” Mech. Mater., 1 , pp. 185–187.

[CrossRef]Taheri, M., Weiland, H., and Rollett, A., 2006, “A Method of Measuring Stored Energy Macroscopically Using Statistically Stored Dislocations in Commercial Purity Aluminum,” Metall. Mater. Trans. A, 37 , pp. 19–25.

[CrossRef]Rosakis, P., Rosakis, A. J., Ravichandran, G., and Hodowany, J., 2000, “A Thermodynamic Internal Variable Model for the Partition of Plastic Work Into Heat and Stored Energy in Metals,” J. Mech. Phys. Solids, 48 , pp. 581–607.

[CrossRef]Rohatgi, A., and Vecchio, K. S., 2002, “The Variation of Dislocation Density as a Function of the Stacking Fault Energy in Shock-Deformed FCC Materials,” Mater. Sci. Eng., A, 328 , pp. 256–266.

[CrossRef]Clayton, J. D., 2009, “A Continuum Description of Nonlinear Elasticity, Slip and Twinning, With Application to Sapphire,” Proc. R. Soc. London, Ser. A, 465 , pp. 307–334.

[CrossRef]Clayton, J. D., Bammann, D. J., and McDowell, D. L., 2005, “A Geometric Framework for the Kinematics of Crystals With Defects,” Philos. Mag., 85 , pp. 3983–4010.

[CrossRef]Clayton, J. D., McDowell, D. L., and Bammann, D. J., 2006, “Modeling Dislocations and Disclinations With Finite Micropolar Elastoplasticity,” Int. J. Plast., 22 , pp. 210–256.

[CrossRef]Li, J. C. M., and Gilman, J. T., 1970, “Disclination Loops in Polymers,” J. Appl. Phys., 41 , pp. 4248–4256.

[CrossRef]Eshelby, J. D., 1954, “Distortion of a Crystal Caused by Point Imperfections,” J. Appl. Phys., 25 , pp. 255–261.

[CrossRef]Eshelby, J. D., 1956, “The Continuum Theory of Lattice Defects,” "*Solid State Physics 3*", F.Seitz and D.Turnbull, eds., Academic, New York, pp. 79–144.

Hirth, J. P., and Lothe, J., 1982, "*Theory of Dislocations*", Krieger, Malabar, FL.

Born, M., and Huang, K., 1954, "*Dynamical Theory of Crystal Lattices*", Oxford University Press, Oxford.

Ericksen, J. L., 1984, “The Cauchy and Born Hypothesis for Crystals,” "*Phase Transformations and Material Instabilities in Solids*", M.E.Gurtin, ed., Academic, New York, pp. 61–78.

Kroner, E., 1960, “Allgemeine kontinuumsthoerie der versetzungen und eigenspannungen,” Arch. Ration. Mech. Anal., 4 , pp. 273–334.

[CrossRef]Lee, E. H., 1969, “Elastic-Plastic Deformation at Finite Strains,” ASME J. Appl. Mech., 36 , pp. 1–6.

Eckart, C., 1948, “The Thermodynamics of Irreversible Processes IV. The Theory of Elasticity and Anelasticity,” Phys. Rev., 73 , pp. 373–382.

[CrossRef]Kroner, E., and Seeger, A., 1959, “Nicht-Lineare Elastizitatstheorie der Versetzungen und Eigenspannungen,” Arch. Ration. Mech. Anal., 3 , pp. 97–119.

[CrossRef]Willis, J. R., 1967, “Second-Order Effects of Dislocations in Anisotropic Crystals,” Int. J. Eng. Sci., 5 , pp. 171–190.

[CrossRef]Teodosiu, C., 1982, "*Elastic Models of Crystal Defects*", Springer-Verlag, Berlin.

Nye, J. F., 1953, “Some Geometrical Relations in Dislocated Crystals,” Acta Metall., 1 , pp. 153–162.

[CrossRef]Kondo, K., 1964, “On the Analytical and Physical Foundations of the Theory of Dislocations and Yielding by the Differential Geometry of Continua,” Int. J. Eng. Sci., 2 , pp. 219–251.

[CrossRef]Steinmann, P., 1996, “Views on Multiplicative Elastoplasticity and the Continuum Theory of Dislocations,” Int. J. Eng. Sci., 34 , pp. 1717–1735.

[CrossRef]Shizawa, K., and Zbib, H., 1999, “A Thermodynamical Theory of Plastic Spin and Internal Stress With Dislocation Density Tensor,” ASME J. Eng. Mater. Technol., 121 , pp. 247–253.

[CrossRef]Bammann, D. J., 2001, “A Model of Crystal Plasticity Containing a Natural Length Scale,” Mater. Sci. Eng., A, 309–310 , pp. 406–410.

[CrossRef]Regueiro, R. A., Bammann, D. J., Marin, E. B., and Garikipati, K., 2002, “A Nonlocal Phenomenological Anisotropic Finite Deformation Plasticity Model Accounting for Dislocation Defects,” ASME J. Eng. Mater. Technol., 124 , pp. 380–387.

[CrossRef]Clayton, J. D., Bammann, D. J., and McDowell, D. L., 2004, “A Multiscale Gradient Theory for Elastoviscoplasticity of Single Crystals,” Int. J. Eng. Sci., 42 , pp. 427–457.

[CrossRef]Clayton, J. D., Chung, P. W., Grinfeld, M. A., and Nothwang, W. D., 2008, “Kinematics, Electromechanics, and Kinetics of Dielectric and Piezoelectric Crystals With Lattice Defects,” Int. J. Eng. Sci., 46 , pp. 10–30.

[CrossRef]Huang, K., 1950, “On the Atomic Theory of Elasticity,” Proc. R. Soc. London, Ser. A, 203 , pp. 178–194.

[CrossRef]Lardner, R. W., 1969, “Dislocation Dynamics and the Theory of the Plasticity of Single Crystals,” Z. Angew. Math. Phys., 20 , pp. 514–529.

[CrossRef]Kratochvil, J., 1972, “Finite Strain Theory of Inelastic Behavior of Crystalline Solids,” "*Foundations of Plasticity*", A.Sawczuk, ed., Noordhoff, Leyden, pp. 401–415.

Hartley, C. S., 2003, “A Method for Linking Thermally Activated Dislocation Mechanisms of Yielding With Continuum Plasticity Theory,” Philos. Mag., 83 , pp. 3783–3808.

[CrossRef]Clayton, J. D., and McDowell, D. L., 2003, “A Multiscale Multiplicative Decomposition for Elastoplasticity of Polycrystals,” Int. J. Plast., 19 , pp. 1401–1444.

[CrossRef]Seeger, A., and Haasen, P., 1958, “Density Changes of Crystals Containing Dislocations,” Philos. Mag., 3 , pp. 470–475.

Toupin, R. A., and Rivlin, R. S., 1960, “Dimensional Changes in Crystals Caused by Dislocations,” J. Math. Phys., 1 , pp. 8–15.

[CrossRef]Glarebrough, L. M., Hargreaves, M. E., and West, G. W., 1957, “The Density of Dislocations in Compressed Copper,” Acta Metall., 5 , pp. 738–740.

[CrossRef]Zhou, M., 2003, “A New Look at the Atomic Level Virial Stress: On Continuum-Molecular System Equivalence,” Proc. R. Soc. London, Ser. A, 459 , pp. 2347–2392.

[CrossRef]Gallego, R., and Ortiz, M., 1993, “A Harmonic/Anharmonic Energy Partition Method for Lattice Statics Computations,” Modell. Simul. Mater. Sci. Eng., 1 , pp. 417–436.

[CrossRef]Maugin, G. A., 1999, "*Nonlinear Waves in Elastic Crystals*", Oxford University Press, New York.

Yavari, A., Ortiz, M., and Bhattacharya, K., 2007, “A Theory of Anharmonic Lattice Statics for Analysis of Defective Crystals,” J. Elast., 86 , pp. 41–83.

[CrossRef]Horstemeyer, M. F., and Baskes, M. I., 1999, “Atomic Finite Deformation Simulations: A Discussion on Length Scale Effects in Relation to Mechanical Stress,” ASME J. Eng. Mater. Technol., 121 , pp. 114–119.

[CrossRef]Clayton, J. D., and Chung, P. W., 2006, “An Atomistic-to-Continuum Framework for Nonlinear Crystal Mechanics Based on Asymptotic Homogenization,” J. Mech. Phys. Solids, 54 , pp. 1604–1639.

[CrossRef]Zbib, H. M., Rubia, T. D. L., and Bulatov, V., 2002, “A Multiscale Model of Plasticity Based on Discrete Dislocation Dynamics,” ASME J. Eng. Mater. Technol., 124 , pp. 78–87.

[CrossRef]Asaro, R. J., 1983, “Crystal Plasticity,” ASME J. Appl. Mech., 50 , pp. 921–934.

Tadmor, E. B., Smith, G. S., Bernstein, N., and Kaxiras, E., 1999, “Mixed Finite Element and Atomistic Formulation for Complex Crystals,” Phys. Rev. B, 59 , pp. 235–245.

[CrossRef]Hill, R., 1972, “On Constitutive Macro-Variables for Heterogeneous Solids at Finite Strain,” Proc. R. Soc. London, Ser. A, 326 , pp. 131–147.

[CrossRef]Clayton, J. D., and McDowell, D. L., 2004, “Homogenized Finite Elastoplasticity and Damage: Theory and Computations,” Mech. Mater., 36 , pp. 799–824.

Hull, D., and Bacon, D. J., 1984, "*Introduction to Dislocations*", 3rd ed., Butterworth-Heinemann, Oxford.

Thurston, R. N., 1974, “Waves in Solids,” "*Handbuch der Physik*", Vol. VIa/4 , C.Truesdell, ed., Springer-Verlag, Berlin, pp. 109–308.

Owen, D. J. R., and Mura, T., 1967, “Dislocation Configurations in Cylindrical Coordinates,” J. Appl. Phys., 38 , pp. 2818–2825.

[CrossRef]Huang, W., and Mura, T., 1970, “Elastic Fields and Energies of a Circular Edge Disclination and a Straight Screw Disclination,” J. Appl. Phys., 41 , pp. 5175–5179.

[CrossRef]Liu, G. C. T., and Li, J. C. M., 1971, “Strain Energies of Disclination Loops,” J. Appl. Phys., 42 , pp. 3313–3315.

[CrossRef]Kuo, H. H., and Mura, T., 1972, “Elastic Field and Strain Energy of a Circular Wedge Disclination,” J. Appl. Phys., 43 , pp. 1454–1457.

[CrossRef]Hughes, D. A., Hansen, N., and Bammann, D. J., 2003, “Geometrically Necessary Boundaries, Incidental Dislocation Boundaries, and Geometrically Necessary Dislocations,” Scr. Mater., 48 , pp. 147–153.

[CrossRef]Zimmerman, J. A., Webb, E. B., Hoyt, J. J., Jones, R. E., Klein, P. A., and Bammann, D. J., 2004, “Calculation of Stress in Atomistic Simulation,” Modell. Simul. Mater. Sci. Eng., 12 , pp. S319–S332.

[CrossRef]Mindlin, R. D., 1972, “Elasticity, Piezoelectricity, and Crystal Lattice Dynamics,” J. Elast., 2 , pp. 217–282.

[CrossRef]Thurston, R. N., and Brugger, K., 1964, “Third-Order Elastic Constants and the Velocity of Small Amplitude Elastic Waves in Homogeneously Stressed Media,” Phys. Rev., 133 , pp. A1604–A1610.

[CrossRef]Zimmerman, J. A., Bammann, D. J., and Gao, H., 2009, “Deformation Gradients for Continuum Mechanical Analysis of Atomistic Simulations,” Int. J. Solids Struct., 46 , pp. 238–253.

[CrossRef]Chantasiriwan, S., and Milstein, F., 1996, “Higher-Order Elasticity of Cubic Metals in the Embedded-Atom Method,” Phys. Rev. B, 53 , pp. 14080–14088.

[CrossRef]Chung, P. W., and Clayton, J. D., 2007, “Multiscale Modeling of Point and Line Defects in Cubic Lattices,” Int. J. Multiscale Comp. Eng., 5 , pp. 203–226.

[CrossRef]