Hansen, S., 1982, “The Formability of Dual-Phase Steels,” Journal of Applied Metalworking, Springer, 2 (2), pp. 107–118.

[CrossRef]Besdo, D., 2000, “On Numerical Problems With the Simulation of the Spring Back Phase of Sheet Metal Forming Process,” "*Plastic and Viscoplastic Response of Materials and Metal Forming: Proceedings of Plasticity ’00, the Eighth International Symposium on Plasticity and its Current Applications, Whistler, Canada July 16–20*", A.S.Khan, H.Zhang, and Y.Yuan, eds., NEAT Press, Fulton, MD, pp. 17–19.

Shi, M. F., Thomas, G. H., Chen, X. M., and Fekete, J. R., 2001, “Formability Performance Comparison Between Dual Phase and HSLA Steels,” "*43rd Mechanical Working and Steel Processing Conference Proceedings*", Vol. 39 , October 28–31, Charlotte, NC, Iron and Steel Society/AIME, Warrendale, PA, pp. 165–174.

Uemori, T., Okada, T., and Yoshida, F., 1998, “Simulation of Springback in V-Bending Process by Elasto-Plastic Finite Element Method With Consideration of Bauschinger Effect,” Met. Mater., 4 (3), pp. 311–314.

[CrossRef]Uemori, T., Okada, T., and Yoshida, F., 2000, “FE Analysis of Springback in Hat-Bending With Consideration of Initial Anisotropy and the Bauschinger Effect,” Key Eng. Mater., 177–180 , pp. 497–502.

[CrossRef]Zhao, K., Chun, B., and Lee, J., 2000, “Numerical Modeling Technique for Tailor Welded Blanks,” SAE Technical Paper 2000-01-0410.

[CrossRef]Li, K. P., Carden, W. P., and Wagoner, R. H., 2002, “Simulation of Springback,” Int. J. Mech. Sci., 44 (1), pp. 103–122.

[CrossRef]Drucker, D. C., and Palgen, L., 1981, “On Stress-Strain Relations Suitable for Cyclic and Other Loadings,” J. Appl. Mech., 48 (3), pp. 479–485.

[CrossRef]Weinmann, K. J., Rosenberger, A. H., Sanchez, L. R., and von Turkovich, B. F., 1988, “The Bauschinger Effect of Sheet Metal Under Cyclic Reverse Pure Bending,” CIRP Ann. – Manuf. Technol., 37 (1), pp. 289–293.

[CrossRef]Yoshida, F., Uemori, T., and Fujiwara, K., 2002, “Elastic-Plastic Behavior of Steel Sheets Under In-Plane Cyclic Tension-Compression at Large Strain,” Int. J. Plast., 18 (5–6), pp. 633–659.

[CrossRef]Yoshida, F., and Uemori, T., 2002, “A Model of Large-Strain Cyclic Plasticity Describing the Bauschinger Effect and Workhardening Stagnation,” Int. J. Plast., 18 , pp. 661–686.

[CrossRef]ZaiqianH., RauchE. F., and Teodosiu, C., 1992, “Work-Hardening Behavior of Mild Steel Under Stress Reversal at Large Strains,” Int. J. Plast., 8 (7), pp. 839–856.

[CrossRef]Haddag, B., Balan, T., and Abed-Meraim, F., 2007, “Investigation of Advanced Strain-Path Dependent Material Models for Sheet Metal Forming Simulations,” Int. J. Plast., 23 (6), pp. 951–979.

[CrossRef]Eggertsen, P. A., and Mattiasson, K., 2009, “On the Modeling of the Bending-Unbending Behavior for Accurate Springback Predictions,” Int. J. Mech. Sci., 51 (7), pp. 547–563.

[CrossRef]Chun, B. K., Jinn, J. T., and Lee, J. K., 2002, “Modeling the Bauschinger Effect for Sheet Metals, Part I: Theory,” Int. J. Plast., 18 (5–6), pp. 571–595.

[CrossRef]Prager, W., 1956, “A New Method of Analyzing Stresses and Strains in Work-Hardening Plastic Solids,” ASME J. App. Mech., 23 , pp. 493–496.

Ziegler, H., 1959, “A Modification of Prager’s Hardening Rule,” Q. Appl. Mech., 17 , pp. 55–65.

Armstrong, P. J., and Frederick, C. O., 1966, “A Mathematical Representation of the Multiaxial Bauschinger Effect,” G.E.G.B Report No. RD/B/N 731.

Chaboche, J. L., 1986, “Time-Independent Constitutive Theories for Cyclic Plasticity,” Int. J. Plast., 2 (2), pp. 149–188.

[CrossRef]Chaboche, J. L., 1989, “Constitutive Equations for Cyclic Plasticty and Cyclic Viscoplasticity,” Int. J. Plast., 5 , pp. 247–302.

[CrossRef]Mroz, Z., 1967, “On the Description of Anisotropic Work Hardening,” J. Mech. Phys. Solids, 15 , pp. 163–175.

[CrossRef]Mroz, Z., 1981, “On Generalized Kinematic Hardening Rule With Memory of Maximal Prestress,” J. Mec. Appl., 5 , pp. 241–259.

Dafalias, Y. F., and Popov, E. P., 1975, “A Model for Nonlinearly Hardening Materials for Complex Loading,” Acta Mech., 21 (3), pp. 173–192.

[CrossRef]Tseng, N. T., and Lee, G. C., 1983, “Simple Plasticity Model of Two Surface Type,” ASCE J. Eng. Mech., 109 , pp. 795–810.

[CrossRef]McDowell, D. L., 1985, “A Two Surface Model for Transient Nonproportional Cyclic Plasticity—Part I: Development of Appropriate Equations,” ASME J. Appl. Mech., 52 , p. 298.

[CrossRef]McDowell, D. L., 1985, “A Two Surface Model for Transient Nonproportional Cyclic Plasticity—Part II: Comparison of Theory With Experiments,” ASME J. Appl. Mech., 52 , p. 303.

[CrossRef]McDowell, D. L., 1989, “Evaluation of Intersection Conditions for Two Surface Plasticity Theory.” Int. J. Plast., 5 , pp. 29–50.

[CrossRef]Geng, L, and Wagoner, R. H., 2000, “Springback Analysis With a Modified Hardening Model,” SAE Technical Paper 2000-01-0768.

[CrossRef]Chun, B. K., Kim, H. Y., and Lee, J. K., 2002, “Modeling the Bauschinger Effect for Sheet Metals, Part II: Applications,” Int. J. Plast., 18 (5–6), pp. 597–616.

[CrossRef]Yoshida, F., and Uemori, T., 2003, “A Model of Large-Strain Cyclic Plasticity and Its Application to Springback Simulation,” Int. J. Mech. Sci., 45 , pp. 1687–1702.

[CrossRef]Boger, R. K., Wagoner, R. H., Barlat, F., Lee, F., and Chung, K., 2005, “Continuous Large Strain, Tension/Compression Testing of Sheet Material,” Int. J. Plast., 21 (12), pp. 2319–2343.

[CrossRef]Omerspahic, E., Mattiasson, and Enquist, K. B., 2006, “Identification of Material Hardening Parameters by Three-Point Bending of Metal Sheets,” Int. J. Mech. Sci., 48 (12), pp. 1525–1532.

[CrossRef]Zhao, K. M., and Lee, J. K., 2002, “Finite Element Analysis of the Three-Point Bending of Sheet Metals,” J. Mater. Process. Technol., 122 , pp. 6–11.

[CrossRef]Eggertsen, P.-A., and Mattiasson, K., 2010, “An Efficient Inverse Approach for Material Hardening Parameter Identification From a Three-Point Bending Test,” Eng. Comput., 26 (2), pp. 159–170.

[CrossRef]Cortese, L., 2006, “Cold Plastic Formability of Metals: FEM Modelling and Optimization of Material Models,” "*Ph.D. dissertation in Theoretical and Applied Mechanics, University of Rome*" “La Sapienza,” Rome.

Lee, M. G., Kim, D., Kim, C., Wenner, M., and Chung, K., 2005, “Spring-Back Evaluation of Automotive Sheets Based on Isotropic-Kinematic Hardening Laws and Non-Quadratic Anisotropic Yield Functions, Part III: Applications,” Int. J. Plast., 21 (5), pp. 915–953.

[CrossRef]Campana, F., Cortese, L., and Placidi, F., 2006, “Finite Element Analysis of High Strength Steel Stamping Process Adopting a Combined Isotropic-Kinematic Hardening Model: Experimental Investigation of the Improvements Achieved in Springback Prevision,” "*IDDRG 06, International Deep Drawing Research Group, Proceedings of the 2006 Conference*", Porto, Portugal, June 19–21.

Hu, Z., 1994, “Work-Hardening Behavior of Mild Steel Under Cyclic Deformation at Finite Strains,” Acta Metall. Mater., 42 (10), pp. 3481–3491.

[CrossRef]Broggiato, G. B., Campana, F., and Cortese, L., 2008, “The Chaboche Nonlinear Kinematic Hardening Model: Calibration Methodology and Validation,” Meccanica, 43 , pp. 115–124.

[CrossRef]Marya, M., Wang, K., Hector, L. G., and Gayden, X. Q., 2006, “Tensile-Shear Forces and Fracture Modes in Single and Multiple Weld Specimens in Dual-Phase Steels,” ASME J. Manuf. Sci. Eng., 128 , pp. 287–298.

[CrossRef]Savic, V., Hector, L. G., Snavely, K. S., and Coryell, J. J., 2010, “Tensile Deformation and Fracture of TRIP590 Steel From Digital Image Correlation,” SAE Paper No. 2010-01-0444.

[CrossRef]Rizzo, L., Cavallo, P., Brun, R., Melander, A., Bleck, W., Troive, L., and Eggers, U., “An Efficient and Effective Methodology and Simulation Tools for Die Design and Springback Compensation for HSS and UHSS, ‘SPRINCOM,’” Midterm Report March 2010, Research Program of the Research Fund for Coal and Steel, Contract No. RFCS-CT-2008-00029.

Khan, A. S., and Huang, S., 1995, "*Continuum Theory of Plasticity*", John Wiley & Sons, Inc.

Campana, F., Cortese, L., and Placidi, F., 2005, “FEM Evaluation of Springback After Sheet Metal Forming: Application to High Strength Steels of a Combined Isotropic-Kinematic Hardening Model,” "*1st International Conference on Super High Strength Steels*", Nov. 2–4, Rome, Italy.

Toropov, V. V., and Var der Giessen, E., 1992, “Parameter Identification for No Linear Costitutive Models: Finite Element Simulation, Optimization, Nontrivial Experiments,” "*Proceedings of the IUTAM SYMPOSIUM on Optimal Design with Advanced Materials*", Aug. 18–20, Lyngby, Denmark, PauliPedersen, ed., Elsevier, Amsterdam, pp. 113–130.