Muhlhaus, H.-B., 1986, “Shear Band Analysis in Granular Materials by Cosserat Theory,” Ing.-Arch., 56, pp. 389–399.

[CrossRef]Tvergaard, V., and Needleman, A., 1997, “Nonlocal Effects on Localization in a Void-Sheet,” Int. J. Solids Struct., 34, pp. 2221–2238.

[CrossRef]de Borst, R., 1993, “Simulation of Strain Localization: A Reappraisal of the Cosserat Continuum,” Eng. Comput., 8(4), pp. 317–332.

[CrossRef]Ramaswamy, S., and Aravas, N., 1998, “Finite Element Implementation of Gradient Plasticity Models Part I: Gradient-Dependent Yield Functions,” Comp. Meth. App. Mech. Eng., 163, pp. 11–32.

[CrossRef]Bazant, Z. P., and Lin, F.-B., 1989, “Stability Against Localization of Softening Into Ellipsoids and Bands: Parameter Study,” Int. J. Solids Stuct., 28, pp. 1483–1498.

[CrossRef]Aifantis, E. C., 1995, “From Micro-Plasticity to Macro-Plasticity: The Scale-Invariance Approach,” Trans. ASME J. Eng. Mater. Technol., 117(4), pp. 352–355.

[CrossRef]Pijaudier-Cabot, G., and Bazant, Z. P., 1987, “Nonlocal Damage Theory,” ASCE J. Eng. Mech., 113, pp. 1512–1533.

[CrossRef]Leblond, J. B., Perrin, G., and Devaux, J., 1994, “Bifurcation Effects in Ductile Metals With Nonlocal Damage,” ASME J. Appl. Mech., 61, pp. 236–242.

[CrossRef]Bazant, Z. P., Belytschko, T. B., and Chang, T. P., 1984, “Continuum Theory for Strain-Softening,” ASCE J. Eng. Mech., 110, pp. 1666–1692.

[CrossRef]Bazant, Z. P., and Pijaudier-Cabot, G., 1988, “Nonlocal Continuum Damage, Localization Instability and Convergence,” ASME J. Appl. Mech., 55, pp. 287–293.

[CrossRef]Pijaudier-Cabot, G., and Bode, L., 1991, “Two-Dimensional Analysis of Strain Localization With Nonlocal Continuum Damage,” paper presented at the 8th ASCE Engineering Mechanics Speciality Conference, Columbus, OH.

Gurson, A. L., 1977, “Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media,” ASME J. Eng. Mater. Technol., 99, pp. 2–15.

[CrossRef]Bammann, D. J., 1984, “An Internal Variable Model of Viscoplasticity,” Int. J. Eng. Sci.22, 1041–1053.

[CrossRef]Bammann, D. J., and Johnson, G. C., 1984, “Developement of a Strain Rate Sensitivity Plasticity Model,” *Engineering Mechanics in Civil Engineering*, A. P.Boresi, and K. P.Chong, eds., ASCE, New York, pp. 454–457.

Bammann, D. J., 1985, “An Internal State Variable Model for Elastic-Viscoplasticity,” *The Mechanics of Dislocations: Proceedings of an International Symposium*, E. C.Aifantis, and J. P.Hirth, eds., The American Society of Metals, Metals Park, OH, p. 103.

Bammann, D. J., and Aifantis, E. C., 1987, “A Model for Finite-Deformation Plasticity,” Acta Mech., 69, pp. 97–117.

[CrossRef]Bammann, D. J., and JohnsonG. C., 1987, “On the Kinematics of Finite-Deformation Plasticity,” Acta Mech., 70, pp. 1–13.

[CrossRef]Bammann, D. J., and Aifantis, E. C., 1987, “A Model for Finite-Deformation Plasticity,” Acta. Mech., 69, pp. 97–117.

[CrossRef]Bammann, D. J., 1988, “Modelling the Large Strain-High Temperature Response of Metals,” *Modeling and Control of Casting and Welding Process IV*, A. F.Giamei, and G. J.Abbaschian, eds., TMS Publications, Warrendale, PA.

Bammann, D. J., Chiesa, M. L., McDonald, A., Kawahara, W. A., Dike, J. J., and Revelli, V. D., 1990b, “Prediction of Ductile Failure in Metal Structures,” *Failure Criteria and Analysis in Dynamic Response*, AMD-Vol. 107, H. Lindberg, ed., The American Society of Mechanical Engineers, Dallas, TX, November, pp. 7–12.

Bammann, D. J., 1990a, “Modelling Temperature and Strain Rate Dependent Large Deformations of Metals,” Appl. Mech. Rev., 43(5), p. S312–S319.

[CrossRef]Bammann, D. J., Chiesa, M. L., Horstemeyer, M. F., and Weingarten, L. I., 1993, “Failure in Ductile Materials Using Finite Element Methods,” *Structural Crashworthiness and Failure, Applied Science*, N.Jones and T.Weirzbicki, eds., Elsevier Applied Science, London, pp. 1–52.

Bammann, D. J., Chiesa, M. L., and Johnson, G. C., 1995, “An Internal State Variable Model for Temperature and Strain Rate Dependent Metals,” *Constitutive Laws: Experiments and Numerical Implementation*, A. M.Rajendran and R. C.Batra, eds., CIMNE, Barcelona, pp. 84–97.

Johnson, G. R., and Cook, W. H., 1983, “A Constitutive Model and Data for Metals Subjected to Large Strain, High Strain Rates and High Temperatures,” Proceedings of the Seventh International Symposium on Ballistics, April 19–21, The Hague, The Netherlands, pp. 541–547.

Cocks, A. C. F., and Ashby, M. G., 1980, “Intergranular Fracture During Power-Law Creep Under Multiaxial Stresses,” Met. Sci., 14, pp. 395–402.

[CrossRef]Taylor, G. I., and Quinney, H., 1934, “The Latent Energy Remaining in a Metal After Cold Working,” Proc. R. Soc. London A, 143, pp. 307–326.

[CrossRef]Fremond, M., and Nedjar, B., 1993, “Endommagement et Principe des Puissances Virtuelles,” C. R. Acc. Sci. II, 317(7), pp. 857–864.

Lorentz, E., 1997, “Lois de Comportment a Gradients de Variables Internes: Construction, Formulation Variationnelle et Mise en Oeuvre Numerique,” Ph.D. dissertation, Ecole Polytechnique, Palaisseau, France (in French).

Aravas, N., 1987, “On the Numerical Integration of a Class of Pressure-Dependent Plasticity Models,” Int. J. Numer. Methods Eng., 24, pp. 1395–1416.

[CrossRef]Bazant, Z. P., and Pijaudier-Cabot, G., 1989, “Measurement of the Characteristic Length for Nonlocal Continuum,” J. Eng. Mech., 115, pp. 755–767.

[CrossRef]Enakoutsa, K., Leblond, J. B., and Perrin, G., 2007, “Numerical Implementation and Assessment of the GLPD Micromorphic Model of Ductile Rupture,” Eur. J. Mech. A/Solids, 28, pp. 445–460.

[CrossRef]Enakoutsa, K., and Leblond, J. B., 2009, “Numerical Implementation and Assessment of a Phenomenological Nonlocal Model of Ductile Rupture,” Comput. Methods Appl. Mech. Eng., 196, pp. 1946–1957.

[CrossRef]Johnson, W., 1987, “Henry Tresca as the Originator of Adiabatic Shear Heat Lines,” Int. J. Mech. Sci., 29, pp. 301–310.

Coutney, T. H., 2000, *Mechanical Behavior of Materials*, McGraw-Hill, New York.

Hutchinson, J. W., 2000, “Plasticity at the Micron Scale,” Int. J. Solids Struct., 37, pp. 225–238.

[CrossRef]Lemaitre, J., and Chaboche, J. L., 1989, *Mechanics of Solid Materials*, Cambridge University Press, Cambridge, UK.

Horstemeyer, M. F., Matalanis, M. M., and Siebe, M. L., 2000, “Micromechanical Finite Element Calculations of Temperature and Void Configuration Effects on Void Growth and Coalescence,” Int. J. Plast., 16, pp. 979–1015.

[CrossRef]Halphen, B., and Nguyen, Q. S., 1975, “Sur les Matériaux Standards Généralisés,” J. Mech, 14, pp. 39–63, in French.

Drabek, T., and Bohm, H. J., 2005, “Damage Model for Studying Ductile Matrix Failure in Composites,” Comput. Mater. Sci., 32, pp. 329–336.

[CrossRef]Baaser, H., and Tvergaard, V., 2003, “A New Algorithmic Approach Treating Nonlocal Effects at Finite Rate-Independent Deformation Using Rousselier Damage Model,” Comput. Methods Appl. Mech. Eng., 192, pp. 107–124.

[CrossRef]Tvergaard, V., and Needleman, A., 1995, “Effects of Nonlocal Damage in Porous Plastic Solids,” Int. J. Solids Struct., 32, pp. 1063–1077.

[CrossRef]