Tresca, H., 1864, “Memoir on the Flow of Solid Bodies Under Strong Pressure,” Comptes-rendus de l'académie des sciences, 59, p. 754–758.

von Mises, R., 1913, “Mechanik der festen Körpern im plastisch-deformablen Zustand. Nachrichten von der königlichen Gesellschaft der Wissenschaften zu Göttingen,” Mathematisch-Physikalische Klasse, pp. 582–592.

Hencky, H., 1924, “Zur Theorie plastischer Deformationen und der hierdurch im Material hervorgerufenen Nachspannungen,” ZaMM, 4, pp. 323–335.

[CrossRef]Bardet, J., 1990, “Lode Dependences for Isotropic Pressure-Sensitive Elastoplastic Materials,” ASME J. Appl. Mech., 57(3), pp. 498–506.

[CrossRef]Menetrey, P., and Willam, K. J., 1995, “Triaxial Failure Criterion for Concrete and Its Generalization,” ACI Struct. J., 92(3), pp. 311–318.

Bigoni, D., and Piccolroza, A., 2003, “A New Yield Function for Geomaterials,” *Constitutive Modeling and Analysis of Boundary Value Problems in Geotechnical Engineering*, C.Viggiani, ed., Hevelius, Benevento, Italy, pp. 266–281.

Fossum, A., and Brannon, R., 2006, “On a Viscoplastic Model for Rocks With Mechanism-Dependent Characteristic Times,” Acta Geotech., 1, pp. 89–106.

[CrossRef]Spitzig, W. A., Sober, R. J., and Richmond, O., 1975, “Pressure Dependence of Yielding and Associated Volume Expansion in Tempered Martensite,” Acta Metall., 23, pp. 885–893.

[CrossRef]Spitzig, W. A., Sober, R. J., and Richmond, O., 1976, “The Effect of Hydrostatic Pressure on the Deformation Behavior of Maraging and HY-80 Steels and Its Implications for Plasticity Theory,” Metall. Trans., 7A, pp. 1703–1710.

[CrossRef]Spitzig, W. A., and Richmond, O., 1984, “The Effect of Pressure on the Flow Stress of Metals,” Acta Metall., 32(3), pp. 457–463.

[CrossRef]Wilson, C. D., 2002, “A Critical Reexamination of Lassical Metal Plasticity,” ASME J. Appl. Mech., 69(1), pp. 63–68.

[CrossRef]Brunig, M., 1999, “Numerical Simulation of the Large Elastic–Plastic Deformation Behavior of Hydrostatic Stress-Sensitive Solids,” Int. J. Plast., 15, pp. 1237–1264.

[CrossRef]Drucker, D. C., and Prager, W., 1952, “Soil Mechanics and Plastic Analysis of Limit Design,” Q. Appl. Math., 10, pp. 157–165.

Brunig, M., Berger, S., and Obrecht, H., 2000, “Numerical Simulation of the Localization Behavior of Hydrostatic-Stress-Sensitive Metals,” Int. J. Mech. Sci., 42, pp. 2147–2166.

[CrossRef]Brunig, M., Chyra, O., Albrecht, D., Driemeier, L., and Alves, M., 2008, “A Ductile Damage Criterion at Various Stress Triaxialities,” Int. J. Plast., 24, pp. 1731–1755.

[CrossRef]Cazacu, O., and Barlat, F., 2003, “Application of Representation Theory to Describe Yielding of Anisotropic Aluminum Alloys,” Int. J. Eng. Sci., 41, pp. 1367–1385.

[CrossRef]Cazacu, O., and Barlat, F., 2004, “A Criterion for Description of Anisotropy and Yield Differential Effects in Pressure-Insensitive Metals,” Int. J. Plast., 20(11), pp. 2027–2045.

[CrossRef]Cazacu, O., Plunkett, B., and Barlat, F., 2006, “Orthotropic Yield Criterion for Hexagonal Closed Packed Metals,” Int. J. Plast., 22(7), pp. 1171–1194.

[CrossRef]Cazacu, O., Ionescu, I. R., and Yoon, J. W., 2010, “Orthotropic Strain Rate Potential for the Description of Anisotropy in Tension and Compression of Metals,” Int. J. Plast., 26, pp. 887–904.

[CrossRef]Racherla, V., and Bassani, J., 2007, “Strain Burst Phenomena in the Necking of a Sheet That Deforms by Non-Associated Plastic Flow,” Modell. Simul. Mater. Sci. Eng., 15, pp. S297–S311.

[CrossRef]Bai, Y., and Wierzbicki, T., 2008, “A New Model of Metal Plasticity and Fracture With Pressure and Lode Dependence,” Int. J. Plast., 24, pp. 1071–1096.

[CrossRef]Mirone, G., and Corallo, D., 2010, “A Local Viewpoint for Evaluating the Influence of Stress Triaxiality and Lode Angle on Ductile Failure and Hardening,” Int. J. Plast., 26, pp. 348–371.

[CrossRef]Gao, X., Zhang, T., Hayden, M., and Roe, C., 2009, “Effects of the Stress State on Plasticity and Ductile Failure of an Aluminum 5083 Alloy,” Int. J. Plast., 25, pp. 2366–2382.

[CrossRef]Gao, X., Zhang, T., Zhou, J., Graham, S. M., Hayden, M., and Roe, C., 2011, “On Stress-State Dependent Plasticity Modeling: Significance of the Hydrostatic Stress, the Third Invariant of Stress Deviator and the Non-Associated Flow Rule,” Int. J. Plast., 27, pp. 217–231.

[CrossRef]Prager, W., 1956, “A New Method of Analyzing Stresses and Strains in Work-Hardening Plastic Solids,” ASME J. Appl. Mech., 23, pp. 493–496.

Ziegler, H., 1959, “A Modification of Prager's Hardening Rule,” Q. Appl. Math., 7, pp. 55–65.

Mroz, Z., 1967, “On the Description of Anisotropic Work Hardening,” J. Mech. Phys. Solids, 15, pp. 163–175.

[CrossRef]Mroz, Z., 1969, “An Attempt to Describe the Behavior of Metals Under Cyclic Loads Using a More General Work-Hardening Model,” Acta Mech., 7, pp. 199–212.

[CrossRef]Armstrong, P. J., and Frederick, C. O., 1966, “A Mathematical Representation of the Multiaxial Bauschinger Effect,” Berkeley Laboratories, R&D Department, CA, CEGB Report No RD/B/N/731.

Chaboche, J. L., Dang-Van, K., and Cordier, G., 1979, “Modelization of the Strain Memory Effect on the Cyclic Hardening of 316 Stainless Steel,” Transactions of 5th International Conference on Structural Mechanics in Reactor Technology (SMiRT), Berlin, August 13–17, Division L, Paper No. L11/3.

Chaboche, J.-L., and Rousselier, G., 1983, “On the Plastic and Viscoplastic Constitutive Equations, Part I: Rules Developed With Internal Variable Concept. Part II: Application of Internal Variable Concepts to the 316 Stainless Steel,” ASME J. Pressure Vessel Technol., 105, pp. 153–164.

[CrossRef]Chaboche, J.-L., 1986, “Time Independent Constitutive Theories for Cyclic Plasticity,” Int. J. Plast., 2, pp. 149–188.

[CrossRef]Chaboche, J.-L., 1989, “Constitutive Equations for Cyclic Plasticity and Cyclic Viscoplasticity,” Int. J. Plast., 5, pp. 247–302.

[CrossRef]Chaboche, J.-L., 1991, “On Some Modifications of Kinematic Hardening to Improve the Description of Ratcheting Effects,” Int. J. Plast., 7, pp. 661–678.

[CrossRef]Voyiadjis, G. Z., and Basuroychowdhury, I. N., 1998, “A Plasticity Model for Multiaxial Cyclic Loading and Ratcheting,” Acta Mech., 126, pp. 19–35.

[CrossRef]Bari, S., and Hassan, T., 2002, “An Advancement in Cyclic Plasticity Modeling for Multiaxial Ratcheting Simulation,” Int. J. Plast., 18, pp. 873–894.

[CrossRef]Yoshida, F., Uemori, T., and Fujiwara, K., 2002, “Elastic-Plastic Behavior of Steel Sheets Under In-Plane Cyclic Tension-Compression at Large Strain,” Int. J. Plast., 18, pp. 633–659.

[CrossRef]Chun, B. K., Kim, H. Y., and Lee, J. K., 2002, “Modeling the Bauschinger Effect for Sheet Metals, Part II: Applications,” Int. J. Plast., 18, pp. 597–616.

[CrossRef]Chun, B. K., Kim, H. Y., and Lee, J. K., 2002, “Modeling the Bauschinger Effect for Sheet Metals, Part I: Theory,” Int. J. Plast., 18, pp. 597–616.

[CrossRef]Jiang, Y., and Kurath, P., 1996, “Characteristics of Armstrong-Frederick Type Plasticity Model,” Int. J. Plast., 12, pp. 387–415.

[CrossRef]Wang, H., and Barkley, M. E., 1998, “Strain Space Formulation of the Armstrong-Fredrick Family of Plasticity Models,” ASME J. Eng. Mater. Technol., 120(3), pp. 230–235.

[CrossRef]Wang, H., and Barkley, M. E., 1999, “A Strain Space Nonlinear Kinematic Hardening/Softening Plasticity Models,” Int. J. Plast., 15, pp. 755–777.

[CrossRef]Basuroychowdhury, I. N., and Voyiadjis, G. Z., 1998, “A Multiaxial Cyclic Plasticity Model for Non-Proportional Loading Cases,” Int. J. Plast., 14(9), pp. 855–870.

[CrossRef]Geng, L., and Wagoner, R. H., 2000, “Springback Analysis With a Modified Nonlinear Hardening Model,” SAE Technical Paper No. 2000-01-0768.

[CrossRef]Yaguchi, M., Yamamoto, M., and Ogata, T., 2002, “A Viscoplastic Constitutive Model for Nickel-Base Superalloy, Part I: Kinematic Hardening Rule of Anisotropic Dynamic Recovery,” Int. J. Plast., 18, pp. 1083–1109.

[CrossRef]Voyiadjis, G. Z., and Al-Rub, R. K. A., 2003, “Thermodynamic Based Model for the Evolution Equation of the Backstress in Cyclic Plasticity,” Int. J. Plast., 19, pp. 2121–2147.

[CrossRef]Chaboche, J.-L., 2008, “A Review of Some Plasticity and Viscoplasticity Constitutive Theories,” Int. J. Plast., 24, pp. 1642–1693.

[CrossRef]Troiano, E., Parker, A. P., Underwood, J. H., and Mossey, C., 2003, “Experimental Data, Numerical Fit and Fatigue Life Calculations Relating to Bauschinger Effect in High Strength Armament Steels,” ASME J. Pressure Vessel Technol., 125, pp. 330–334.

[CrossRef]Troiano, E., Parker, A. P., and Underwood, J. H., 2004, “Mechanisms and Modeling Comparing HB7 and A723 High Strength Pressure Vessel Steels,” ASME J. Pressure Vessel Technol., 126, pp. 473–477.

[CrossRef]Farrahi, G. H., Hosseinian, E., and Assempour, A., 2009, “On the Material Modeling of the Autofrettaged Pressure Vessel Steels,” ASME J. Pressure Vessel Technol, 131, p. 051403.

[CrossRef]Coulomb, C.-A., 1776, “Essai sur une application des régles des maximis & minimis a quelques problémes de statique, relatifs á l'architecture,” De l'Imprimerie Royale, Paris.

Mohr, O., 1914, Abhandlungen aus dem Gebiete der Technischen Mechanik, 2nd ed., Wilhelm Ernst & Sohn, Berlin.

Puskar, A., 1993, “A Correlation Among Elastic Modulus Defect, Plastic Strain and Fatigue Life of Metals,” Mater. Sci. Forum, 119–121, pp. 455–460.

[CrossRef]Bauschinger, J., 1881, “Ueber die Veranderung der Elasticitatagrenze und dea Elasticitatamoduls verschiadener Metalle,” Zivilingenieur, 27, pp. 289–348.