Flügge, W., 1975, *Viscoelasticity*, 2nd ed., Springer, Berlin/Heidelberg.

Christensen, R. M., 1982, *Theory of Viscoelasticity*, 2nd ed., Academic Press, New York.

Findley, W. N., Lai, J. S., and Onaran, K., 1976, *Creep and Relaxation of Nonlinear Viscoelastic Materials*, North-Holland Pub. Co., New York.

Reddy, J. N., 2008, *An Introduction to Continuum Mechanics With Applications*, Cambridge University Press, New York.

Chen, T.-M., 1995, “The Hybrid Laplace Transform/Finite Element Method Applied to the Quasi–Static and Dynamic Analysis of Viscoelastic Timoshenko Beams,” Int. J. Numer. Methods Eng., 38(3), pp. 509–522.

[CrossRef]Aköz, Y., and Kadioğlu, F., 1999, “The Mixed Finite Element Method for the Quasi-Static and Dynamic Analysis of Viscoelastic Timoshenko Beams,” Int. J. Numer. Methods Eng., 44(12), pp. 1909–1932.

[CrossRef]Temel, B., Calim, F. F., and Tütüncü, N., 2004, “Quasi-Static and Dynamic Response of Viscoelastic Helical Rods,” J. Sound Vib., 271(3–5), pp. 921–935.

[CrossRef]Chen, Q., and Chan, Y. W., 2000, “Integral Finite Element Method for Dynamical Analysis of Elastic-Viscoelastic Composite Structures,” Comput. Struct., 74(1), pp. 51–64.

[CrossRef]Trindade, M. A., Benjeddou, A., and Ohayon, R., 2001, “Finite Element Modelling of Hybrid Active-Passive Vibration Damping of Multilayer Piezoelectric Sandwich Beams—Part I: Formulation,” Int. J. Numer. Methods Eng., 51(7), pp. 835–854.

[CrossRef]
Pálfalvi, A., 2008, “A Comparison of Finite Element Formulations for Dynamics of Viscoelastic Beams,” Finite Elem. Anal. Design, 44(14), pp. 814–818.

[CrossRef]McTavish, D. J., and Hughes, P. C., 1992, “Finite Element Modeling of Linear Viscoelastic Structures—The GHM Method,” Proceedings of the 33rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Dallas, TX, April 13–15, AIAA Paper No. 92-2380, pp. 1753–1763.

McTavish, D. J., and Hughes, P. C., 1993, “Modeling of Linear Viscoelastic Space Structures,” ASME J. Vib. Acoust., 115(1), pp. 103–110.

[CrossRef]Balamurugan, V., and Narayanan, S., 2002, “Finite Element Formulation and Active Vibration Control Study on Beams Using Smart Constrained Layer Damping (SCLD) Treatment,” J. Sound Vib., 249(2), pp. 227–250.

[CrossRef]Balamurugan, V., and Narayanan, S., 2002, “Active-Passive Hybrid Damping in Beams With Enhanced Smart Constrained Layer Treatment,” Eng. Struct., 24(3), pp. 355–363.

[CrossRef]Johnson, A. R., Tessler, A., and Dambach, M., 1997, “Dynamics of Thick Viscoelastic Beams,” J. Eng. Mater. Technol., 119(3), pp. 273–278.

[CrossRef]Austin, E. M., and Inman, D. J., 1998, “Modeling of Sandwich Structures,” Smart Structures and Materials 1998: Passive Damping and Isolation, Vol. 3327, No. 1, pp. 316–327.

Kennedy, T. C., 1998, “Nonlinear Viscoelastic Analysis of Composite Plates and Shells,” Compos. Struct., 41(3–4), pp. 265–272.

[CrossRef]Oliveira, B. F., and Creus, G. J., 2000, “Viscoelastic Failure Analysis of Composite Plates and Shells,” Compos. Struct., 49(4), pp. 369–384.

[CrossRef]Hammerand, D. C., and Kapania, R. K., 2000, “Geometrically Nonlinear Shell Element for Hygrothermorheologically Simple Linear Viscoelastic Composites,” AIAA J., 38, pp. 2305–2319.

[CrossRef]Payette, G. S., and Reddy, J. N., 2010, “Nonlinear Quasi-Static Finite Element Formulations for Viscoelastic Euler–Bernoulli and Timoshenko Beams,” Int. J. Numer. Methods Biomed. Eng., 26(12), pp. 1736–1755.

[CrossRef]Reddy, J. N., 1984, “A Simple Higher-Order Theory for Laminated Composite Plates,” ASME J. Appl. Mech., 51, pp. 745–752.

[CrossRef]Heyliger, P. R., and Reddy, J. N., 1988, “A Higher-Order Beam Finite Element for Bending and Vibration Problems,” J. Sound Vib., 126(2), pp. 309–326.

[CrossRef]Wang, C. M., Reddy, J. N., and Lee, K. H., 2000, *Shear Deformable Beams and Plates. Relationships With Classical Solutions*, Elsevier, Amesterdam.

Reddy, J. N., 2004, *An Introduction to Nonlinear Finite Element Analysis*, Oxford University Press, Oxford, UK.

Belytschko, T., Liu, W. K., and Moran, B., 2000, *Nonlinear Finite Elements for Continua and Structures*, John Wiley and Sons, Ltd, New York.

Reddy, J. N., 1999, *Theory and Analysis of Elastic Plates*, Taylor and Francis, Philadelphia.

Başar, Y., Ding, Y., and Schultz, R., 1993, “Refined Shear-Deformation Models for Composite Laminates With Finite Rotations,” Int. J. Solids Struct., 30(19), pp. 2611–2638.

[CrossRef]Cortés, F., and Elejabarrieta, M. J., 2007, “Finite Element Formulations for Transient Dynamic Analysis in Structural Systems With Viscoelastic Treatments Containing Fractional Derivative Models,” Int. J. Numer. Methods Eng., 69(10), pp. 2173–2195.

[CrossRef]Enelund, M., and Josefson, B. L., 1997, “Time-Domain Finite Element Analysis of Viscoelastic Structures With Fractional Derivatives Constitutive Relations,” AIAA J., 35(10), pp. 1630–1637.

[CrossRef]Escobedo-Torres, J., and Ricles, J. M., 1998, “The Fractional Order Elastic-Viscoelastic Equations of Motion: Formulation and Solution Methods,” J. Intell. Mater. Syst. Struct., 9(7), pp. 489–502.

[CrossRef]Galucio, A. C., Deü, J.-F., and Ohayon, R., 2004, “Finite Element Formulation of Viscoelastic Sandwich Beams Using Fractional Derivative Operators,” Comput. Mech., 33, pp. 282–291.

[CrossRef]Zheng-you, Z., Gen-guo, L., and Chang-jun, C., 2002, “Quasi-Static and Dynamical Analysis for Viscoelastic Timoshenko Beam With Fractional Derivative Constitutive Relation,” Appl. Math. Mech., 23, pp. 1–12.

[CrossRef]Taylor, R. L., Pister, K. S., and Goudreau, G. L., 1970, “Thermomechanical Analysis of Viscoelastic Solids,” Int. J. Numer. Methods Eng., 2(1), pp. 45–59.

[CrossRef]Simo, J. C., and Hughes, T. J. R., 1998, *Computational Inelasticity*, Springer-Verlag, Berlin.

Reddy, J. N., 1997, “On Locking-Free Shear Deformable Beam Finite Elements,” Comput. Methods Appl. Mech. Eng., 149(1–4), pp. 113–132.

[CrossRef]Reddy, J. N., 2002, *Energy Principles and Variational Methods in Applied Mechanics*, 2nd ed., John Wiley and Sons, Ltd, New York.

Hamming, R., 1987, *Numerical Methods for Scientists and Engineers*, 2nd ed., Dover Publications, Mineola, NY.

Karniadakis, G. E., and Sherwin, S. J., 1999, *Spectral/hp Element Methods for CFD*, Oxford University Press, Oxford, UK.

Lai, J., and Bakker, A., 1996, “3-D Schapery Representation for Non-Linear Viscoelasticity and Finite Element Implementation,” Comput. Mech., 18, pp. 182–191.

[CrossRef]Van Krevelen, D. W., 1990, *Properties of Polymers*, 3rd ed., Elsevier, Amsterdam.

Newmark, N. M., 1959, “A Method of Computation for Structural Dynamics,” J. Eng. Mech., 85, pp. 67–94.

Reddy, J. N., 2006, *An Introduction to the Finite Element Method*, 3rd ed., McGraw-Hill, New York.