0
Research Papers

Focused Ion Beam Induced Surface Damage Effect on the Mechanical Properties of Silicon Nanowires

[+] Author and Article Information
Tatsuya Fujii, Shozo Inoue

Division of Mechanical Systems,
Department of Mechanical and Systems Engineering,
University of Hyogo,
2167 Shosha, Himeji,
Hyogo 671-2201, Japan

Takahiro Namazu

Associate Professor
Division of Mechanical Systems,
Department of Mechanical and Systems Engineering,
University of Hyogo,
2167 Shosha, Himeji,
Hyogo 671-2201, Japan;
JST PRESTO,
Japan Science and Technology Agency,
4-1-8 Honcho, Kawaguchi,
Saitama 332-0012, Japan
e-mail: namazu@eng.u-hyogo.ac.jp

Shouichi Sakakihara

The Institute of Scientific and Industrial Research,
Osaka University,
8-1 Mihogaoka, Ibaraki,
Osaka 567-0047, Japan

1Corresponding author.

Contributed by the Materials Division of ASME for publication in the JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY. Manuscript received January 24, 2013; final manuscript received May 8, 2013; published online June 10, 2013. Assoc. Editor: Hanchen Huang.

J. Eng. Mater. Technol 135(4), 041002 (Jun 10, 2013) (8 pages) Paper No: MATS-13-1017; doi: 10.1115/1.4024545 History: Received January 24, 2013; Revised May 08, 2013

In this paper, the effect of surface damage induced by focused ion beam (FIB) fabrication on the mechanical properties of silicon (Si) nanowires (NWs) was investigated. Uniaxial tensile testing of the NWs was performed using a reusable on-chip tensile test device with 1000 pairs of comb structures working as an electrostatic force actuator, a capacitive displacement sensor, and a force sensor. Si NWs were made from silicon-on-nothing (SON) membranes that were produced by deep reactive ion etching hole fabrication and ultrahigh vacuum annealing. Micro probe manipulation and film deposition functions in a FIB system were used to bond SON membranes to the device's sample stage and then to directly fabricate Si NWs on the device. All the NWs showed brittle fracture in ambient air. The Young's modulus of 57 nm-wide NW was 107.4 GPa, which was increased to 144.2 GPa with increasing the width to 221 nm. The fracture strength ranged from 3.9 GPa to 7.3 GPa. By assuming the thickness of FIB-induced damage layer, the Young's modulus of the layer was estimated to be 96.2 GPa, which was in good agreement with the literature value for amorphous Si.

FIGURES IN THIS ARTICLE
<>
Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.

References

Requicha, A. A. G., 2003, “Nanorobots, NEMS, and Nanoassembly,” Proc. IEEE, 91(11), pp. 1922–1933. [CrossRef]
Verd, J., Abadal, G., Teva, J., Gaudó, M. V., Uranga, A., Borrisé, X., Campabadal, F., Esteve, J., Costa, E. F., Pérez-Murano, F., Davis, Z. J., Forsén, E., Boisen, A., and Barniol, N., 2005, “Design, Fabrication, and Characterization of a Submicroelectromechanical Resonator With Monolithically Integrated CMOS Readout Circuit,” J. Microelectromech. Syst., 14(3), pp. 508–519. [CrossRef]
Chiba, D., Fukami, S., Shimamura, K., Ishiwata, N., Kobayashi, K., and Ono, T., 2011, “Electrical Control of the Ferromagnetic Phase Transition in Cobalt At Room Temperature,” Nature Mater., 10, pp. 853–856. [CrossRef]
Luque, A., Moreno, J. M., Brey, J., Ellis, C. D., Quero, J. M., and Wilamowski, B. M., 2010, “Monolithically Integrated Gas Distribution Chamber for Silicon MEMS Fuel Cells,” J. Microelectromech. Syst., 19(2), pp. 384–390. [CrossRef]
Mehregany, M., Zorman, C. A., Rajan, N., and Chien, H. W., 1998, “Silicon Carbide MEMS for Harsh Environments,” Proc. IEEE, 86(8), pp. 1594–1609. [CrossRef]
Namazu, T., Tashiro, Y., and Inoue, S., 2007, “Ti-Ni Shape Memory Alloy Film-Actuated Microstructures for a MEMS Probe Card,” J. Micromech. Microeng., 17(1), pp. 154–162. [CrossRef]
Tabata, O., Asahi, R., Funabashi, H., Shimaoka, K., and Sugiyama, S., 1992, “Anisotropic Etching of Silicon in TMAH Solutions,” Sens. Actuators, A, 34, pp. 51–57. [CrossRef]
Shikida, M., Hasada, T., and Sato, K., 2006, “Fabrication of Densely Arrayed Micro-Needles With Flow Channels by Mechanical Dicing and Anisotropic Wet Etching,” J. Micromech. Microeng., 16(8), pp. 1740–1747. [CrossRef]
de Boer, M. J., Gardeniers, J. G. E., Jansen, H. V., Smulders, E., Gilde, M.-J., Roelofs, G., Sasserath, J. N., and Elwenspoek, M., 2002, “Guidelines for Etching Silicon MEMS Structures Using Fluorine High-Density Plasmas at Cryogenic Temperatures,” J. Microelectromech. Syst., 11(4), pp. 385–401. [CrossRef]
Xie, H., and Fedder, G. K., 2003, “Fabrication, Characterization, and Analysis of a DRIE CMOS-MEMS Gyroscope,” IEEE Sens. J., 3(5), pp. 622–631. [CrossRef]
Matsui, S., Kaito, T., Fujita, J., Komuro, M., Kanda, K., and Haruyama, Y., 2000, “Three-Dimensional Nanostructure Fabrication by Focused-Ion-Beam Chemical Vapor Deposition,” J. Vac. Sci. Technol. B, 18(6), pp. 3181–3184. [CrossRef]
Morita, T., Kometani, R., Watanabe, K., Kanda, K., Haruyama, Y., Hoshino, T., Kondo, K., Kaito, T., Ichihashi, T., Fujita, J., Ishida, M., Ochiai, Y., Tajima, T., and Matsui, S., 2003, “Free-Space-Wiring Fabrication in Nano-Space by Focused-Ion-Beam Chemical Vapor Deposition,” J. Vac. Sci. Technol. B, 21(6), pp. 2737–2741. [CrossRef]
Li, B., Tang, X., Xie, H., and Zhang, X., 2003, “Focused Ion Beam (FIB) Nano-Machining and FIB Moire Technique for Strain Analysis in MEMS/NEMS Structures and Devices,” Proceedings of the 16th IEEE International Conference on Microelectromechanical Systems (MEMS-2003), Kyoto, Japan, January 19–23, pp. 674–677. [CrossRef]
Chuang, W.-H., Fettig, R. K., and Ghodssi, R., 2007, “Nano-Scale Fatigue Study of LPCVD Silicon Nitride Thin Films Using a Mechanical-Amplifier Actuator,” J. Micromech. Microeng., 17(5), pp. 938–944. [CrossRef]
Kim, G. M., Kawai, S., Nagashio, M., Kawakatsu, H., and Brugger, J., 2004, “Nanomechanical Structures With 91 MHz Resonance Frequency Fabricated by Local Deposition and Dry Etching,” J. Vac. Sci. Technol. B, 22(4), pp. 1658–1661. [CrossRef]
Snow, E. S., and Campbell, P. M., 1994, “Fabrication of Si Nanostructures With an Atomic Force Microscope,” Appl. Phys. Lett., 64(15), pp. 1932–1934. [CrossRef]
Sugimura, H., and Nakagiri, N., 1995, “Chemical Approach to Nanofabrication: Modifications of Silicon Surfaces Patterned by Scanning Probe Anodization,” Jpn. J. Appl. Phys., 34, pp. 3406–3411. [CrossRef]
Namazu, T., Isono, Y., and Tanaka, T., 2000, “Evaluation of Size Effect on Mechanical Properties of Single Crystal Silicon by Nanoscale Bending Test Using AFM,” J. Microelectromech. Syst., 9(4), pp. 450–459. [CrossRef]
Namazu, T., Isono, Y., and Tanaka, T., 2002, “Plastic Deformation of Nanometric Single Crystal Silicon Wire in AFM Bending Test at Intermediate Temperatures,” J. Microelectromech. Syst., 11(2), pp. 125–135. [CrossRef]
Tsuchiya, T., Tabata, O., Sakata, J., and Taga, Y., 1998, “Specimen Size Effect on Tensile Strength of Surface-Micromachined Polycrystalline Silicon Thin Films,” J. Microelectromech. Syst., 7(1), pp. 106–113. [CrossRef]
Namazu, T., and Isono, Y., 2003, “Quasi-Static Bending Test of Nano-Scale SiO2 Wire at Intermediate Temperatures Using AFM-Based Technique,” Sens. Actuators, A, 104(1), pp. 78–85. [CrossRef]
Namazu, T., and Isono, Y., 2009, “Fatigue Life Prediction Criterion for Micro-Nanoscale Single-Crystal Silicon Structures,” J. Microelectromech. Syst., 18(1), pp. 129–137. [CrossRef]
Tang, D.-M., Ren, C.-L., Wang, M.-S., Wei, X., Kawamoto, N., Liu, C., Bando, Y., Mitome, M., Fukata, N., and Golberg, D., 2012, “Mechanical Properties of Si Nanowires as Revealed by In Situ Transmission Electron Microscopy and Molecular Dynamics Simulations,” Nano Lett., 12, pp. 1898–1904. [CrossRef] [PubMed]
Zhu, Y., Xu, F., Qin, Q., Fung, W. Y., and Lu, W., 2009, “Mechanical Properties of Vapor-Liquid-Solid Synthesized Silicon Nanowires,” Nano Lett., 9(11), pp. 3934–3939. [CrossRef] [PubMed]
Koskinen, J., Steinwall, J. E., Soave, R., and Johnson, H. H., 1993, “Microtensile Testing of Free-Standing Polysilicon Fibers of Various Grain Sizes,” J. Micromech. Microeng., 3, pp. 13–17. [CrossRef]
Sharpe, W. N., Jr., Yuan, B., and Vaidyanathan, R., 1997, “Measurements of Young's Modulus, Poisson's Ratio, and Tensile Strength of Polysilicon,” Proceedings of the Tenth IEEE International Workshop on Microelectromechanical Systems, (MEM'97), Nagoya, Japan, January 26–30, pp. 424–429. [CrossRef]
Sato, K., Yoshioka, T., Ando, T., Shikida, M., and Kawabata, T., 1998, “Tensile Testing of Silicon Film Having Different Crystallographic Orientations Carried Out on a Silicon Chip,” Sens. Actuators, A, 70, pp. 148–152. [CrossRef]
Schweitz, J.-A., and Ericson, F., 1999, “Evaluation of Mechanical Materials Properties by Means of Surface Micromachined Structures,” Sens. Actuators, A, 74, pp. 126–133. [CrossRef]
Hoffmann, S., Utke, I., Moser, B., Michler, J., Christiansen, S. H., Schmidt, V., Senz, S., Werner, P., Gosele, U., and Ballif, C., 2006, “Measurement of the Bending Strength of Vapor-Liquid-Solid Grown Silicon Nanowires,” Nano Lett., 6(4), pp. 622–625. [CrossRef] [PubMed]
Kapels, H., Aigner, R., and Binder, J., 2000, “Fracture Strength and Fatigue of Polysilicon Determined by a Novel Thermal Actuator,” IEEE Trans. Electron Devices, 47(7), pp. 1522–1528. [CrossRef]
Tsuchiya, T., Hirata, M., Chiba, N., Udo, R., Yoshitomi, Y., Ando, T., Sato, K., Takashima, K., Higo, Y., Saotome, Y., Ogawa, H., and Ozaki, K., 2005, “Cross Comparison of Thin-Film Tensile-Testing Methods Examined Using Single-Crystal Silicon, Polysilicon, Nickel, and Titanium Films,” J. Microelectromech. Syst., 15(5), pp. 1178–1186. [CrossRef]
Yi, T., Li, L., and Kim, C. J., 2000, “Microscale Material Testing of Single Crystalline Silicon: Process Effects on Surface Morphology and Tensile Strength,” Sens. Actuators, A, 83(1–3), pp. 172–178. [CrossRef]
Fujii, T., Sudoh, K., Inoue, S., and Namazu, T., 2013, “Direct Tensile Testing of Sub-100nm-Size Silicon Nanowires Fabricated by FIB-Sampling of SON Membranes,” Proceedings of the 26th IEEE International Conference on Microelectromechanical Systems (MEMS 2013), Taipei, China, January 20–24, pp. 488–491. [CrossRef]
Kiuchi, M., Matsui, S., and Isono, Y., 2007, “Mechanical Characteristics of FIB Deposited Carbon Nanowires Using an Electrostatic Actuated Nano Tensile Testing Device,” J. Microelectromech. Syst., 16(2), pp. 191–201. [CrossRef]
Tsuchiya, T., Ura, Y., Sugano, K., and Tabata, O., 2012, “Electrostatic Tensile Testing Device With Nanonewton and Nanometer Resolution and Its Application to C60 Nanowire Testing,” J. Microelectromech. Syst., 21(3), pp. 523–529. [CrossRef]
Zhu, Y., and Espinosa, H. D., 2005, “An Electromechanical Material Testing System for In Situ Electron Microscopy and Applications,” Proc. Natl. Acad. Sci. U.S.A., 102(41), pp. 14503–14508. [CrossRef] [PubMed]
Sudoh, K., Iwasaki, H., Hiruta, R., Kuribayashi, H., and Shimizu, R., 2009, “Void Shape Evolution and Formation of Silicon-on-Nothing Structures During Hydrogen Annealing of Hole Arrays on Si(001),” J. Appl. Phys., 105(8), p. 083536. [CrossRef]
Mizushima, I., Sato, T., Taniguchi, S., and Tsunashima, Y., 2000, “Empty-Space-in-Silicon Technique for Fabricating a Silicon-on-Nothing Structure,” Appl. Phys. Lett., 77(20), pp. 3290–3292. [CrossRef]
Sato, T., Mizushima, I., Taniguchi, S., Takenaka, K., Shimonishi, S., Hayashi, H., Hatano, M., Sugihara, K., and Tsunashima, Y., 2004, “Fabrication of Silicon-on-Nothing Structure by Substrate Engineering Using the Empty-Space-in-Silicon Formation Technique.” Jpn. J. Appl. Phys., 43(1), pp. 12–18. [CrossRef]
Isono, Y., Namazu, T., and Terayama, N., 2006, “Development of AFM Tensile Test Technique for Evaluating Mechanical Properties of Sub-Micron Thick DLC Films,” J. Microelectromech. Syst., 15(1), pp. 169–180. [CrossRef]
Nakao, S., Ando, T., Shikida, M., and Sato, K., 2008, “The Effect of Temperature on Fracture Toughness in a Single-Crystal-Silicon Film and Transition in Its Fracture Mode,” J. Micromech. Microeng., 18(1), p. 015026. [CrossRef]
Ishida, T., Cleri, F., Kakushima, K., Mita, M., Sato, T., Miyata, M., Itamura, N., Endo, J., Toshiyoshi, H., Sasaki, N., Collard, D., and Fujita, H., 2011, “Exceptional Plasticity of Silicon Nanobridges,” Nanotechnology, 22(35), p. 355704. [CrossRef] [PubMed]
McSkimin, H. J., 1953, “Measurement of Elastic Constants at Low Temperatures by Means of Ultrasonic Waves Data for Silicon and Germanium Single Crystals, and for Fused Silica,” J. Appl. Phys., 24(8), pp. 988–997. [CrossRef]
Kiener, D., Motz, C., Rester, M., Jenko, M., and Dehm, G., 2007, “FIB Damage of Cu and Possible Consequences for Miniaturized Mechanical Tests,” Mater. Sci. Eng., A, 459, pp. 262–272. [CrossRef]
El-Awady, J. A., Woodward, C., Dimiduk, D. M., and Ghoniem, N. M., 2009, “Effects of Focused Ion Beam Induced Damage on the Plasticity of Micropillars,” Phys. Rev. B, 80, p. 104104. [CrossRef]
Lee, S.-W., Mordehai, D., Rabkin, E., and Nix, W. D., 2011, “Effects of Focused-Ion-Beam Irradiation and Prestraining on the Mechanical Properties of FCC Au Microparticles on a Sapphire Substrate,” J. Mater. Res., 26(14), pp. 1653–1661. [CrossRef]
Wang, Z., Kato, T., Hirayama, T., Kato, N., Sasaki, K., and Saka, H., 2005, “Surface Damage Induced by Focused-Ion-Beam Milling in a Si/Si p-n Junction Cross-Sectional Specimen,” Appl. Surf. Sci., 241, pp. 80–86. [CrossRef]
Chawla, K. K., 1998, Composite Materials, Science and Engineering, Springer-Verlag, New York, pp. 207–213.
Gaire, C., Ye, D.-X., Tang, F., Picu, R. C., Wang, G.-C., and Lu, T.-M., 2005,” Mechanical Testing of Isolated Amorphous Silicon Slanted Nanorods,” J. Nanosci. Nanotechnol., 5, pp. 1893–1897. [CrossRef] [PubMed]
Allred, C. L., Yuan, X., Bazant, M. Z., and Hobbs, L. W., 2004, “Elastic Constants of Defected and Amorphous Silicon With the Environment-Dependent Interatomic Potential,” Phys. Rev. B, 70, p. 134113. [CrossRef]
Freund, L. B., and Suresh, S., 2003, Thin Film Materials, Cambridge University Press, London, p. 96.
Davis, D. G. S., 1973, “The Statistical Approach to Engineering Design in Ceramics,” Proc. Br. Ceram. Soc., 22, pp. 429–452.
Nakao, S., Ando, T., Shikida, M., and Sato, K., 2008, “Effect of Temperature on Fracture Toughness in a Single-Crystal-Silicon Film and Transition in Its Fracture Mode,” J. Micromech. Microeng., 18(1), p. 015026. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Photographs of the developed reusable on-chip MEMS device for nanoscale uniaxial tensile testing

Grahic Jump Location
Fig. 2

Fabrication process for SON membranes

Grahic Jump Location
Fig. 3

Snapshot of fabrication process for Si NW made from SON membrane

Grahic Jump Location
Fig. 4

Axial elastic strain distribution derived from FEA

Grahic Jump Location
Fig. 5

Relationship between the applied voltage to actuator and the displacement of two capacitive sensors

Grahic Jump Location
Fig. 6

SEM image of fractured Si NW. The NW fractured within the parallel section.

Grahic Jump Location
Fig. 7

Representative tensile stress–strain relations of Si NWs with the width of (a) 57 nm and (b) 217 nm. All the NWs fractured in a brittle manner.

Grahic Jump Location
Fig. 8

Relationships between specimen size parameters and the Young's modulus ((a) width and (b) thickness)

Grahic Jump Location
Fig. 9

Relationship between the ratio of damaged cross-sectional area to whole cross-sectional area, S2/S1+2, and the Young's modulus

Grahic Jump Location
Fig. 10

Relationship between the effective surface area, SE, and the fracture strength

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In